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ABSTRACT 

The U.S. Marine Corps developed the Combat Active Replacement Factor (CARF) 

methodology as a way to obtain reliable logistics planning factors to aid in the estimation 

of equipment losses in future conflicts. The continuous evaluation and validation of these 

types of methodologies is considered of critical importance, since its effects directly 

impact combat effectiveness, supply chain management, logistics, acquisitions, and 

overall budgeting. This thesis analyzes a proposed methodology for use in calculating 

Explicitly Calculated CARFs (ECCs), making use of real-world Master Data Repository 

(MDR) data from previous low- and medium-intensity conflicts. As well, this thesis 

analyzes proposed regression models used in calculating Federal Supply Code (FSC) and 

Federal Supply Group (FSG) CARFs. We employ bootstrapping techniques in order to 

analyze the sensitivity of ECCs and find that as many of 70% may exhibit extreme 

sensitivity to reasonable changes in usage data.  We employ Ordinary Least Squares 

regression models to estimate CARFs by FSC and FSG and obtain dramatically more 

CARFs relative to the draft methodology.  Finally, a cross validation of a sample of the 

regression models reveals that CARFs generated from such models tend to vary 

substantially from their actual values.  
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EXECUTIVE SUMMARY 

The Combat Active Replacement Factors (CARF) are logistics-planning factors that aid 

in the estimation of equipment losses in future conflicts. The continuous evaluation and 

validation of this methodology is critically important, since the CARF values are 

employed in the War Reserves System (WRS), where they directly impact combat 

effectiveness, supply chain management, logistics, acquisitions, and overall budgeting. 

Evaluating the effectiveness of these procedures is a meaningful area of study. 

We begin with a comparative analytical review based on a sensitivity analysis of 

the currently proposed methods. Explicitly Calculated CARFs (ECCs) are factors 

calculated using available historical data, in this case, from Operation Iraqi Freedom and 

Operation Enduring Freedom, by observing the quantities of equipment deployed and the 

reported losses of such equipment during the years 2005 through 2010. We generate 50 

bootstrapped replications of the historic usage data to obtain a distribution of ECCs for 

those items uniquely identified by Table of Authorized Material Control Numbers 

(TAMNs) with available usage data.  We show that based on the individual level and 

phase of conflict, many ECCs are significantly sensitive to minimal changes in the data 

with which they are calculated. We find that 12 of the low level ECCs and 140 of the 

medium level ECCs are not significantly different from zero.  The least sensitive were 

Assault ECCs for Low Intensity Conflict (ECC_LA), where 82 of 611 showed high 

sensitivity, while the most sensitive were Sustainment ECCs for Medium Intensity 

Conflict (ECC_MS), with 357 of 514 being highly sensitive.  

 The proposed methodology for calculating CARFs for equipment that do not have 

all the necessary information to obtain an ECC involves building linear regression models 

based on the equipment’s classification within its hierarchy of the Federal Supply Code 

(FSC) and Federal Supply Group (FSG). These CARFs are denoted CRCs and GRCs, 

respectively.  This leverages the assumption that similar end items, within the same 

classification, have similar attributes that can be used to calculate their attrition rate. We 

employ Ordinary Least Squares (OLS) regression and achieve vast improvements in 

terms of significance and model validity across the studied levels and phases of conflict, 



 xvi 

relative to the draft methodology and we obtain a substantial increase in the number of 

CRCs and GRCs produced.  For example, our method obtains 369 CRCs for the Assault 

phase of Medium Intensity Conflict (CRC_MA) and 398 GRCs for the Assault phase of 

Low Intensity Conflict (GRC_LA), relative to 2 and 46 according to the draft 

methodology. 

 We also cross-validate a sample of the regression models, with the primary intent 

to evaluate the performance of the regression fits and the hope of gaining some insight as 

to determining how sensitive the models would be to gaps in the data. In every trial, we 

withheld 20%, 15%, and 10% of the available data. With this, we could run the 

regression models and compare estimated CRC (or GRC) with the TAMCN’s actual ECC 

as well as the bootstrapped Confidence Intervals.  The examples we used here were the 

FSCs 2320 and 5820, and the FSG 23. These FSCs and FSG were chosen because of their 

amount of TAMCNs with available data and because of their primary importance, as 

rolling stock and communications equipment, to the operating forces.  We find that even 

withholding 10% of the data upon which the original model was built produces results 

that tend to fall outside even the bootstrapped CIs. 

Intending to provide an overall methodology that can predict over 6,000 CARF 

values based on the resulting values of the limited information on just 600 CARFs might 

not be the best approach. Though no validation was performed in the entire OLS process 

applicability and results, the conclusions obtained demonstrate the need for further 

research into proper methodologies. 
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I. INTRODUCTION 

A. MISSION AND PURPOSE OF THIS THESIS 

 This study’s intent is to provide a comparative analytical review, based on a 

sensitivity analysis, of the proposed methods for forecasting equipment losses in future 

conflicts, known as Combat Active Replacement Factors (CARFs). This thesis, in a very 

narrow scope, will also aid in the future research of various proposed methodologies by 

reviewing multiple regression models that can be used in CARF value calculations. 

 The United States Marine Corps developed the CARF methodology as a way to 

obtain reliable logistics planning factors to aid in the estimation of equipment losses in 

future conflicts. The continuous evaluation and validation of this methodology is 

important since the CARF values are employed in the War Reserves System (WRS) and 

where they directly impact combat effectiveness, supply chain management, logistics, 

acquisitions, and budgeting. 

CARFs are considered critical elements in the requirements determination process 

due to their effect on the entire Marine Corps’ Acquisition Program. Funding 

requirements can be substantially altered with a small change in the CARF of either a 

“high-density or high-value dollar item” (Department of the Navy, 2010a, p. 1-5). The 

continued need to review the effectiveness of the procedures that derive these combat 

planning factors is a very attractive and meaningful area of study. 

This thesis assesses the sensitivity of the results of the process for producing 

CARF estimates to reasonable changes in observed usage data.  In addition, it maps out 

an alternative method for generating CARFs for items that lack usage data and it 

demonstrates a technique for evaluating the effectiveness of that method.   

B. BACKGROUND 

 The CARFs have a crucial role in estimating the Marine Corps’ War Reserve 

Materiel Requirements (WRMR) and feed into the Approved Acquisition Objectives 

(AAO). It is the responsibility of the Deputy Commandant for Installations and Logistics 

to validate CARFs and the methodology through which they are obtained, as per Marine 
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Corps Order (MCO) 5311.1D. CARFs reflect the anticipated combat replacement needed 

for equipment losses, on a 30-day basis, incident to amphibious operations and other 

combat operations (Department of the Navy, 2010b). As per MCO 5311.1D, a unit is 

considered to be in combat operations only when in direct enemy contact. Accurate 

CARFs provide the planning flexibility to meet requirements of any conflict, by theater 

and specific operational plan. 

 CARFs are an indispensable tool in determining War Reserve Materiel (WRM) 

stocks. NAVMC 4000.1 specifies that CARFs be established for Type 1 Principal End 

Items (Table of Authorized Material Control Number [TAMCN]) beginning with the 

letter A, B, C, D, or E) designated with a Combat Essential Code 1 (CEC 1), for Class II, 

clothing and individual item supplies, and Class VII, principal end item supplies, 

following the Plans, Policies, and Operations (PP&O) publication that contains the 

essential equipment list (Department of the Navy, 2010b). CARFs also have a direct 

impact on the strategic lift and sustainment requirements for a deploying Marine Air-

Ground Task Force (MAGTF). These replacement factors are the planning guidelines 

used to properly equip forces in the specific phases, level, and duration of a conflict, in 

order to maintain quantities up to their Table of Equipment (T/E) level in the event that 

essential materiel is damaged beyond utilization during a contingency operation 

(Department of the Navy, 2010a). 

CARFs are categorized in two phases of combat operations. The Assault Phase, 

represented by the first 30 days of combat, and the Sustainment Phase, represented by 

every subsequent 30-day period. The historical data used in calculating CARFs is, under 

a draft methodology proposition, categorized into three levels of conflict intensity: 

• Low-intensity conflict (LIC): This level of intensity is described as 
a political-military confrontation between contending states or 
groups below conventional war and above the routine, peaceful 
competition among states. LICs are often localized, generally in 
third-world countries, but contain regional and global implications. 
A LIC can range from an insurrection to a more organized use of 
employing political, economic, informational, and military 
instruments, to include irregular warfare scenarios. 

• Medium-intensity conflict (MIC): This level of intensity is 
perceived as a “protracted” employment of regular armies in 
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combat and a major manifestation of power by the opposing and 
responding nations, with the designation and prioritization of 
military objectives in order to achieve political and economic 
goals. 

• High-intensity conflict (HIC): This level of intensity is described 
as a conflict in which we observe a relatively unconstrained use of 
power by one or more nations to gain or protect territory and 
interests that directly affect the survival of the nation. Extreme 
levels of violence and the employment of the full range of military 
forces are evident in this level of conflict (Draft version of a 
contracted 2011 study [Draft CARF Technical Report, 2011], 3). 

The various CARFs to be obtained are shown in Table 1-1. 

Table 1-1. CARF Values by Conflict Intensity and Phase (Draft CARF, 2011) 

 

C. LITERATURE REVIEW 

 In early 1985, Professor Lindsay of the Naval Postgraduate School published a 

technical report titled An Examination of the USMC Combat Active Replacement Factor 

(CARF) Determination System. This report mentions the wide ongoing efforts that were 

conducted throughout the early 1980s to develop new procedures for the Marine Corps’ 

CARF values generation, since until that decade only adapted Army replacement factor 

values were used. In his report, Lindsay compares two methods of estimating CARF 

values. 

 The first method relies on scenario-oriented models using mean-time-to-loss 

(MTTL) estimates and means of the observed distributions in different situations where 

specific items are subject to either the same loss rate or varying loss rates throughout a 

time period. Lindsay’s report emphasizes that the use of exponential distributions to 

Intensity of Conflict Assault Phase Sustainment Phase 
High Intensity Conflict 

(HIC) 
CARF High Intensity Assault 

(CARFHA) 
CARF High Intensity 

Sustainment (CARFHS) 
Medium Intensity 

Conflict (MIC) 
CARF Medium Intensity 

Assault (CARFMA) 
CARF Medium Intensity 
Sustainment (CARFMS) 

Low Intensity Conflict 
(LIC) 

CARF Low Intensity Assault 
(CARFLA) 

CARF Low Intensity 
Sustainment (CARFLS) 
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arrive at a time to loss is based on the same assumption of constant failure rates employed 

in reliability theory and, at that time, “essentially mandated” by the Department of 

Defense for this type of study (Lindsay, 1985). 

 The second method in this analysis looks at arriving at a CARF value based on 

the professional military judgment of many experts who rate “chance of loss” for specific 

types of equipment. Through this approach, a panel of subject matter experts (SMEs) is 

tasked with ranking the expected likelihood of loss of an item in various situations, and 

then compares which items should have a higher or lower CARF value. Those groups of 

rankings are converted into an interval scale, which can provide a scaled average score 

for each item and, in doing so, can provide CARF estimated values. As mentioned in 

Lindsay’s report, the disadvantage observed with this methodology is the large number of 

SMEs needed in order to provide a sensible level of probability of success since it is 

“based upon the disagreement among judges” (Lindsay, 1985, p. 23). In his conclusions, 

Lindsay points out that, in certain instances, CARF values that are generated by relying 

on SME input might be the preferred approach since they often offer more substantial 

empirical evidence for the reasoning of the resulting values and the way they are 

obtained. 

 In December 1985, Major Hee Sun Song’s (Republic of Korea Army) presented 

the results of his thesis research titled “Application of Life Distributions Estimated 

Equipment Losses in Combat,” in which he proposed a similar CARF generation process 

based on MTTL estimates that can be applied to various types of life distributions, such 

as exponential, Weibull, or gamma, as well as to a nonhomogeneous Poisson process 

(Song, 1985). He suggests that CARFs generated is this manner are more sensible 

because it is easier  to understand the thought process that brings about such input values 

and results. 

 The results of Song’s thesis postulates that the intention to consider and compare 

all of these life distributions in the study of life expectancy of an item in a combat 

scenario aids in the proper selection of such a distribution, when one cannot be exactly 

identified because of the complexity of war scenarios in itself. Song also emphasizes that 

his work serves as an extension of Lindsay’s work by “ removing the need to assume a 



 5 

constant loss rate.“ (Song, 1985, p. 43) and suggests that it might be an easier approach if 

we consider different levels of combat intensity and calculate MTTLs for each with the 

intention that we avoid “sealing” all our estimations with one over-all-population MTTL. 

But, of note, in his conclusion he also states, “The choice of scenario and life distribution 

will, of course, depend primarily on the specific item being studied” (Song, 1985, p. 43). 

 In 1990, emphasizing the importance of having properly generated CARF values 

and their effects in the war reserves stock, Major Joseph L. Stylons, United States Marine 

Corps (USMC), publishes his findings in an NPS thesis titled “War Reserves Stocks and 

Marine Corps Sustainability.” He takes the approach of explaining how the “deficit-in-

assertiveness” of our planning factors infect the proper war reserve stocks, the entire 

acquisitions program, and consequently the overall ability of the Marine Corps to project 

power as a global military force. The business point of view of this thesis reflects the 

wide ramifications of the matter of study to the overall funding levels and acquisition 

power and a definite need for emphasis in the use of these logistics planning factors 

(Stylons, 1990). 

 A review of the literature failed to identify any studies more recent than those 

discussed above, to include studies concerning other services. 

D. AN EARLY VERSION OF A PROPOSED METHODOLOGY AND 
AVAILABLE DATA 

 A draft version of the study of a proposed Fiscal Year (FY) 2011 CARF 

assignment methodology follows a specific assignment algorithm decision flow map 

depicted in Figure 1-1. 
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Figure 1-1. CARF Assignment Algorithm Decision Flow (LSX 2011).  
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This decision flow map encompasses a total of almost 7,300 calculated CARFs 

using different statistical models. Of the total CARFs, 15% are calculated by following 

an explicitly calculated CARF methodology and 14% are calculated using varying forms 

of regression models (Logistics Operations Research Branch [LSX], 2011). 

In CARF assignment methodology, ECC values are calculated for those items, 

referred to as TAMCNs, with recorded data obtained from Operation Iraqi Freedom 

(OIF) and Operation Enduring Freedom (OEF) losses in low- and medium-intensity 

conflicts. Because of the lack of data, high-intensity conflicts require the use of combat 

modeling data and are outside of the scope of this thesis. This level of conflict is not 

considered in the methodologies reviewed in this study. 

The two-phase categorization determines the inclusion of a Median Maintenance 

Deadline (MMD) factor added when calculating CARFs within the assault phase only, 

accounting for the temporary losses due to maintenance during this initial phase. This 

added factor is the arithmetic mean of the deadline time, per TAMCN, obtained from 

historical data from OIF and OEF (LSX, 2011). 

In order to calculate a CARF over an assault or sustainment phase, for a specific 

TAMCN, the following essential pieces of information are needed: the number of days in 

the duration of the deployment, the total number of items deployed to the theater, the 

total number of items destroyed by date, and, for the assault period, the MMD. For 

example, using the equations first developed by the Marine Corps Combat Development 

Command, Operations Analysis Division, and described in the “Draft Combat Active 

Replacement Factors (CARFs) Technical Report” draft version of a 2011 study (LSX, 

2011) a CARF calculated for the assault phase is obtained as follows: 

Assault  CARF = K / N
T

× 30 days⎛
⎝⎜

⎞
⎠⎟ +MMD .

 

where: 

K = Total number permanently lost 

N = Total number of items deployed 

T = Total number days TAMCN was deployed to the contingency operation, and 

MMD = Median Maintenance Deadline 
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In a CARF calculated for the sustainment phase, the following equation is used 

(LSX, 2011): 

Sustainment  CARF = K / N
T

× 30 days⎛
⎝⎜

⎞
⎠⎟ .

 

ECC methodology is the most accurate and preferred approach to calculating 

CARFs. Currently, 1,109 CARFs have been calculated using this ECC method (LSX, 

2011). 

For TAMCNs without sufficient information to calculate an ECC, the next step in 

the decision flow map is to calculate their CARFs by building a regression model from 

items within their same Federal Supply Code (FSC) that already have ECCs. These 

supply codes, and Federal Supply Groups (FSGs), represent National Stock Numbers 

(NSN), which are 13-digit numbers used by the Federal Government and assigned by the 

Defense Logistics Agency Customer Interaction Center (DLA CIC) to identify and 

classify products. For example, the first four digits of an NSN represent these FSCs and 

FSGs, which would contain similar groups of end items, i.e., NSN 2355-XX-XXX-

XXXX represents the group of wheeled combat, assault, and tactical vehicles. 

The type of model for estimating CARFs by FSC and FSG that we examine in 

this thesis is linear regression.  However, it is important to note that the activity 

responsible for producing CARFs no longer uses linear regression as their preferred 

method.  As specified in the Detailed CARF Assignment Methodology and CARF-STAT 

Documentation report  (LSX, 2011) and in accordance with the legacy FY2011 CARF 

Assignment Algorithm, nested multivariate analysis techniques were used. Within the 

regression, two numerical predictors, total approved allowance and cost for a TAMCN, 

are selected as the most statistically significant and influential factors, based on the 

available data and the regression model that initially includes 23 terms. In this study of a 

proposed methodology, the resulting R-square obtained through this regression is 0.9843 

(LSX, 2011), reflecting a sufficient goodness-of-fit for calculated CARFs. 

For CARFs that cannot be calculated under a CRC method, the regression model 

is built on the next higher echelon of classification, the FSG. The FSG Regression CARF 

(GRC) method uses the attributes of the TAMCNs for which CARFs were obtained 
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through the previous two higher levels, FSC and ECC. Once again, within the regression, 

the most statistically significant two numerical predictors remain the total approved 

allowance and the cost for a TAMCN (LSX, 2011). 

E. PRELIMINARY OBSERVATIONS AND RECOMMENDATIONS ON 
HOW TO PROCEED 

 As a first approach, we bootstrap the historical usage data in order to perform a 

sensitivity analysis for the calculation of ECCs.  We develop a criterion that describes the 

sensitivity of ECCs to changes in the usage data.  We find that as many as 140 TAMCNs 

have ECCs so sensitive that their bootstrapped confidence intervals contain 0.0.  In 

addition, we find that as many as 303 low-level conflict ECCs and 357 medium-level 

conflict ECCs that have valid confidence intervals may be overly sensitive.   

 As a second objective, we focus our efforts on the 1,137 CARFs in which 

FSC/FSG Regression CARF methodology is employed, by assessing the validity of each 

regression model presented. We are able to produce 14,292 CARFs using different 

regression models.  In addition, we outline a method for assessing the validity of these 

CARF estimates. 

 Ultimately, our results show that caution is in order when applying statistical 

methods in an attempt to overcome the pervasive gaps in usage data.  Given the relative 

paucity of usage data, and the sensitivity of parameters calculated from it, it is probably 

wise to consider at least augmenting the process with combat modeling and simulation 

and the contributions of subject matter experts.   
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II. AVAILABLE DATA AND DETAILED CARF REGRESSION 
METHODOLOGY 

A. PROVIDED DATA AND ITS EMPLOYMENT 

 The data for this study are contained in a table that covers information on 6,137 

unique TAMCNs.  As mentioned in a draft version of a contracted 2011 study (LSX, 

2011), the JMP© statistical analysis toolset (see www.jmp.com) is used because of its 

commercial off-the-shelf availability and its ability to be easily employed for quick 

analysis and create multiple regression models. This file includes scripts for 

automatically calculating ECCs for low- and medium-intensity conflicts, to include the 

respective assault phases, based on usage data from Marine Expeditionary Forces (MEF) 

between 2005 and 2010 in OIF and OEF. The file also includes scripts for fitting FSC 

and FSG regression models, as well as further-on procedures that are depicted in the 

decision flow map, such as Average FSC CARF (ACC) and Weighted Average FSG 

CARF (WGC), which are not within the scope of this thesis. 

 The 6,137 rows represent each TAMCN, or individual equipment variant, that the 

MEFs employ, and capture a wide variety of information, such as dimensions, weights, 

commodity, nomenclature, NSNs, CECs, and weapons systems codes (see Appendix A 

for full data sample). 

1. Table of Authorized Material Control Number (TAMCN) 

The TAMCNs are the most expedient way to track the equipment variants while 

maintaining data integrity with the MDR source files provided. TAMCN5s only show the 

first five numbers of every one of these TAMCNs, which provides a grouping of similar 

TAMCNs. The first letter of a TAMCN refers to the commodity code, while the 

nomenclature (NOMEN) captures the assigned descriptive name of the equipment 

variant. 

2. Combat Essential Codes (CECs) 

CECs are designator numbers that indicate if the item is essential in a combat 

operation. As described in Chapter I, these CECs are assigned to equipment variants that 
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have been identified as Combat Essential End Items and are classified as Type 1, Type 2, 

or Type 3. Type 1 end items are TAMCNs beginning with A, B, C, D, or E. The WMR 

Handbook states that when calculated CARFs are employed, they are only applied to 

“TAMCNs associated with Type 1 End Items for Class II and VII” (Department of the 

Navy, 2010a, et al., p. 1-5). In the data presented, only 2,421 items are combat essential, 

represented by a CEC number of “1,” and 3,716 items are represented by a CEC number 

of “0” as noncombat essential. 

3. Total Approved Acquisition Objective (AAO_TOTAL) 

The total equipment approved quantities are captured under AAO_TOTAL, which 

is an aggregate of the quantities reported by each of the three MEFs, the WRM reserves, 

each of the worldwide regional Marine Forces Commands, and the three Maritime 

Prepositioning Squadrons (MPSs). 

4. Equipment Variant Best Cost (BEST_COST) 

The unit price of these equipment variants is also reported in this data file under 

the header BEST_COST, which is the greater value when comparing three costs in the 

data file: the cost to procure (COST_PROCURE), the cost to replace 

(COST_REPLACE), and the standard unit price (STD_UNIT_PRICE). 

5. Dimensional Information 

For most TAMCNs, physical dimensions such as weight, length, normal height 

and lowest height (i.e., motorized cranes), and width are included in the dataset all of 

these are factors that could be observed as possibly influential in a regression model. 

6. Total Quantity On-Hand and Losses (OH and WIR) 

Historical data, such as total quantity on-hand (deployed) and total losses reported 

from 2005 through 2010, are available for approximately 10% of the TAMCNs. The  

on-hand data available is titled OH_VII_MEF_20XX, in which the last digits refer to the 

year it covers. The dataset only provides observations for 908 TAMCNs for each of the 

six years of recorded data. The equipment losses are also accumulated by year under the 
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headers WIR_VII_MEF_20XX and comprise a total of 984 available observations per 

year. These totals refer to the number of cells that contain information for the specific 

TAMCNs for which data is available, i.e., only reported equipment on-hand during that 

year and only reported losses, if any for that year, will appear. 

 The data in the total quantity on-hand and losses is employed in the calculation of 

ECCs, as described in Chapter I, and form the core of the first analytical steps of this 

thesis for the purpose of bootstrapping over the losses, while maintaining the total on-

hand data constant. This allows multiple replications that conform to the characteristics 

of the original ECC data, while obtaining simulated losses to further study performance 

of the methodology. This process is further detailed in Chapter III. 

 Emphasis is placed on analyzing this first step of calculating ECCs. Since the 

calculated ECC will serve as a “seed” from where the rest of the decision “tree” is built 

upon, it is of keen importance to prove resiliency. We obtain a confidence interval that 

reflects how much we can rely on this initial step, which will grow the different 

“branches” that become the FSC, FSG, ACC, and WGC CARFs. 

B. DESCRIPTION OF THE REGRESSION MODELS AND OBSERVATIONS 

 As detailed in Chapter I, a proposed CARF methodology uses regression analysis 

to build a predictive model in which CARF values are calculated for those individual 

equipment variants that do not have enough historical information for an ECC approach. 

Equipment variants that fall within the same general end use are classified under 

the same FSC. Within each FSC, many TAMCNs may not have historical usage data 

available. The intent is to fit a regression to the TAMCNs within the FSC for which 

historical data is available, and use that model to predict a CARF for the TAMCNs that 

lack usage data. As with all regression models, the bigger the N, where N = number of 

TAMCNs with historical data, the more reliable and/or acceptable prediction we expect 

to encounter. 

Both regression models assume that FSC and FSG assignments have been 

validated by the Marine Corps Combat Development Command (MCCDC) Integration 

Division (ID) and considered accurate (LSX, 2011). This is of relevance since the 
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similarity between these assigned FSC and FSG classifications is something from which 

we can draw similarities in order to generalize the fitting of the employed regression 

models. 

The 6,137 TAMCNs are classified in a total of 274 FSCs, which are categorized 

under a total of 63 FSGs. The breakdown of the total number of TAMCNs per FSG is 

presented in Table 2-1. 

Table 2-1. Total Number (N) of TAMCNs by FSG 
FSG N 

 
FSG N 

 
FSG N 

 
FSG N 

10 128 
 

37 12 
 

56 5 
 

74 16 
12 50 

 
38 87 

 
58 822 

 
75 19 

13 42 
 

39 40 
 

59 123 
 

76 1 
14 23 

 
40 15 

 
60 6 

 
79 15 

15 4 
 

41 102 
 

61 144 
 

80 1 
16 76 

 
42 225 

 
62 25 

 
81 41 

19 11 
 

43 39 
 

63 20 
 

83 55 
23 361 

 
44 2 

 
65 64 

 
84 872 

24 7 
 

45 10 
 

66 483 
 

85 2 
25 57 

 
46 22 

 
67 35 

 
88 5 

26 1 
 

47 6 
 

68 12 
 

89 45 
28 6 

 
49 186 

 
69 58 

 
91 1 

29 5 
 

51 180 
 

70 340 
 

93 8 
34 38 

 
52 9 

 
71 30 

 
95 5 

35 32 
 

53 5 
 

72 24 
 

99 388 
36 12 

 
54 55 

 
73 26 

   
 

An example of the use of these FSGs and FSCs, in a simplified view, is provided 

in Table 2-2. In the example, FSG 15 refers to the overall group of aircraft and airframe 

structural components. FSC 1550, drones, falls under this grouping category and includes 

four distinct TAMCNs, as presented in the table. The complete list of FSCs is presented 

in Appendix B. 

  



 15 

Table 2-2. Example of FSG 15, FSC 1550, and TAMCNs Classification 
FSG FSC TAMCN NOMENCLATURE 
15 ----- ------------ AIRCRAFT AND AIRFRAME STRUCTURAL COMPONENTS 

 1550 ----------- DRONES 
  A01217G MICRO UNMANNED AERIAL VEHICLE (MUAV) 

  
A03217G DRONE ACFT, RAVEN DDL 

  
A32527G UAV SYSTEM, DRAGON EYE 

  
A32527G UAV SYSTEM, RAVEN 

 

The regression model employed for the FSC CARF uses a Generalized Linear 

Model (GLM) regression with a Poisson distribution and a log-link function. The 

AAO_TOTAL and BEST_COST, and their first order interaction, are the regressors for 

each FSC. The regression models employed for the FSG CARF replicate this same 

procedure. 

The early version draft CARF report justifies the use of the GLM regression by 

stating that its primary benefit is the ability to employ a “variety of distribution families 

and associated fit functions” (LSX 2011, pg 9) in order to capture the complexity of 

dependencies between the necessary regression factors. While unable to re-create the 

same results as presented by the draft CARF report, analyzing the results obtained when 

following the regression methodology reveals that none of these FSC regressions (CRCs) 

are valid. Most of them show an insufficient chi-square test result and—a most 

compelling observation—all of the parameter estimates’ p-values are at or above a 0.9, 

indicating no real importance as far as being influential factors in the regression. 

The decision flow map from the proposed CARF methodology, presented in 

Chapter I, indicates that previously obtained calculations for the FSC CARF, in 

conjunction with the previously calculated ECCs, are to be used in the FSG CARF 

regression models. This is not evident in the FSG CARF computational procedure  

and regression analysis script provided. In fact, the procedure is repeated and directly 

follows the same steps used in calculating FSC CARFs, regressing on AAO_TOTAL  

and BEST_COST and their first order interaction, the cross effect 
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AAO_TOTAL*BEST_COST, without making use of the successfully calculated ECCs 

and FSCs. This, in turn, would neglect the value added to the FSG regression as provided 

by previously calculated FSCs. 

C. VISUALIZING CURRENT RESULTS OF THE PROPOSED CARF 
METHODOLOGY 

 The total count of CARFs assigned, by level and phase of conflict, using the ECC, 

CRC, and GRC procedures are depicted in Table 2-3. From the total of 6,137 TAMCNs, 

and only reporting on the 2,421 CEC 1 TAMCN, on average almost 31% of them have 

been assigned an ECC CARF; less than 5% have been assigned a CRC CARF; and less 

than 3% have been assigned a GRC CARF. 

Table 2-3. Total CARFs Assigned with % of Total (ECC/CRC/GRC) 

 ECC % of Total CRC % of Total  GRC % of Total 
CARF LA 611 30.40 190 9.45 46 2.29 
CARF LS 626 31.21 197 9.82 51 2.54 
CARF MA 611 30.40 2 0.10 59 2.94 
CARF MS 621 30.91 3 0.15 65 3.24 

 
Figures 2-1 through 2-4 give a graphical representation of the number of CARFs 

assigned by all the procedures used in a proposed CARF methodology. 

 

 

Figure 2-1. Obtained LA CARFs by Source. 
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Figure 2-2. Obtained LS CARFs by Source. 

 

Figure 2-3. Obtained MA CARFs by Source. 
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Figure 2-4. Obtained MS CARFs by Source. 

 Figures 2-1 and 2-2 depict the sources for the low-level conflict, the assault and 

sustainment phases, respectively. For the assault phase of this level of conflict over 9% of 

the CARFs are obtained by a CRC approach, while roughly 2% is obtained through a 

GRC approach. We can observe comparable results for the sustainment phase, where 

close to 10% is obtained by CRC and only 2.5% is obtained by GRC. The perception of 

this difference can be simply explained by understanding that the sustainment phase 

comprises more observed time and more data captured during that event. 

 In contrast, Figures 2-3 and 2-4 depict the sources for the medium-level conflict 

and show the overall inverse results. For the assault phase, a mere 0.10% is obtained 

through CRC, while 3% is obtained through GRC. Similarly, for the sustainment phase, 

0.15% is obtained through CRC compared to over 3% by GRC. We can interpret this 

difference as a result of the evident contrast between a medium-level conflict, which has 

historically been of a shorter duration, and a low-level conflict. In this case, the 

scarceness observed in the available data in a medium-level conflict forces the 

employment of the FSG regression models (GRC) to be more frequently relied upon for 

CARF value calculations, thus generalizing loss quantities within an FSG. 

 Overall, the intention of increasing reliance on the regressed models employed in 

calculating CARF values arises from (1) the sparseness of the available historical data 
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used in calculating ECCs, which demands a method that can fill those “gaps” with 

reliable CARF values; and (2) that most of the CARF values that are not currently 

obtained from a explicitly calculated approach, using the sparse data available, are 

obtained from other methodologies that depend upon the resiliency of the CRC and GRC 

methodology, as is the case of an ACC and the GRC (LSX, 2011). If historical data 

collection and management is bolstered, the regressed methodology can be further 

developed to serve as bedrock for a more resilient and accurate means of calculating 

equipment needs for the operating forces and overall acquisitions policies. 
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III. BOOTSTRAPPING ON ECC CARF AND REGRESSION 
ANALYSIS OF FSC AND FSG CARF MODELS 

A. BOOTSTRAPPING ON AVAILABLE HISTORICAL DATA FOR ECC 
SENSITIVITY ANALYSIS 

CARFs are essentially an expected number of casualties in a future conflict per 

unit of equipment deployed in combat. The dataset contains the annual total equipment 

deployed and total casualties observed for approximately 740 TAMCNs. We obtain 

ECCs for each CARF for which there is usage data. Since the data are sparse and the 

proportion of casualties small, the ECCs may be highly sensitive to reasonable variation 

in the data. We test the extent to which the ECCs are overly sensitive to changes in the 

input data by bootstrapping 50 additional datasets. Unless otherwise indicated, all 

TAMCNs refer only to CEC 1 items. 

1. Bootstrapping 

 For a given TAMCN with a particular number of units deployed to a combat 

zone, the number of casualties can be modeled as a binomial distribution. Each day 

represents an opportunity for each piece of equipment to experience a casualty, thus 

complying with the assumption of a fixed number of trials. We assume independence 

between trials and constant probability of failure. Thus, the number of casualties for a 

given TAMCN for a particular year is distributed binomially, as follows: 

, 

where  is the total number of casualties observed for that year and 365 days of the year 

representing 365 opportunities for the total deployed number of TAMCNs to fail. 

 In performing this sensitivity analysis, the bootstrapping methodology is applied 

to the equipment losses (WIR_VII_MEF_20XX) for the years 2005 thru 2010. These 

data are extracted and placed in a Microsoft Excel file to be used as an input file for a 

JAVA script to more efficiently perform the necessary functions, using a random number 

generator to obtain the results. Fifty replications of this procedure are performed 

casualties~BINOM n=Total onhand × 365days( ), p = x
n

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

x
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generating a total of 306,850 rows of bootstrapped data available once all replications are 

stacked. We then run the original ECC script on the bootstrapped dataset in order to 

obtain a distribution of ECCs for each TAMCN. 

 We obtain a 90% bootstrapped confidence interval for each TAMCN that was 

originally assigned an ECC. We observe the following: Of the 611 ECC_LAs and 611 

ECC_MAs, 12 TAMCNs have bootstrapped confidence intervals that contain 0.0. Of a 

total of 626 ECC_LSs, 135 have bootstrapped confidence intervals that contain 0.0. Of 

the total of 626 ECC_MSs, 140 have bootstrapped confidence intervals that contain 0.0. 

 We are able to identify the problem that creates these results by observing that in 

the numbers reported in the original file presented for the study of this thesis, the 

casualties reported under the column headers WIR_VII_MEF_2XXX, as defined in 

Chapter II, have very sparse data. The lack of information for losses in these specific 

TAMCNs, throughout the years reported, create a problematic “noise” that can affect the 

calculations used in producing valid ECCs and regression predicted values. In  

Table 3-1, the 12 ECC_LAs and MAs that have a lower bound of 0.0 are presented 

together with their cost, emphasizing the impact unreliable ECC values can have for 

some of these TAMCNs. 

Table 3-1. FSCs with ECC_LAs and MAs with 90% Bootstrapped Confidence 
Intervals that Contain 0.0 

FSC TAMCN NOMENCLATURE 
Interval 
Lower 
Bound 

Interval 
Upper 
Bound 

Item 
Cost ($) 

6930 A70467G GENERATOR, SIGNAL 0 0.0036 18,500 
6930 A70467G GENERATOR, SIGNAL 0 0.0040 17,520 
6930 A70467G 40 GHZ SIGNAL GENERATOR 0 0.0040 17,520 
6930 A70527G 1 GHZ SIGNAL GENERATOR 0 0.0011 10,083 
6930 A70597G SOIL RESISTIVITY TESTER 0 0.0004 2,367 
6930 A70847G LOCAL AREA NETWORK TEST SET 0 0.0019 7,116 
6930 A70847GA ANALYZER, NETWORK 0 0.0021 10,481 
8110 B05717B DRUM, FABRIC, COLLAPSIBLE, 500 GAL. CAP. 0 0.0012 2,088 
8110 B05717B DRUM, FABRIC, COLLAPSIBLE, 500 GAL. CAP. 0 0.0011 2,128 
5180 B22602E TOOL KIT, PIONEER, ENGR SQUAD 0 0.0007 3,193 
5180 B22602E PIONEER KIT (SQD) 0 0.0009 10,000 
4933 E05002E KIT, GAUGE, PULLOVER, COMPLETE 0 0.0037 2,927 
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In Table 3-2, only the 10 highest-cost items for ECC_LS and ECC_MS with a lower 

bound of 0.0 are presented. The complete list of these particular TAMCNs is presented in 

Appendix C. Also, their cost is included in Table 3-2 to emphasize the severity that these 

inconsistencies on obtained ECCs can have on some TAMCNs. These 10 TAMCNs are 

items with a unit cost exceeding $1 million. 

Table 3-2. Sample of FSCs with ECC_LSs and MSs with 90% Bootstrapped 
Confidence Intervals that Contain 0.0 

FSC TAMCN NOMENCLATURE 
Interval 
Lower 
Bound 

Interval 
Upper 
Bound 

Item 
Cost ($) 

B00157B 2330 Z BACKSCATTER RUGGEDIZED TRAILER (ZBRT) 0 0.0075 72,080,000 
E08567K 2350 ASSAULT AMPHIBIOUS VEHICLE, RECOVERY 0 0.0486 4,054,968 
E13787K 2350 RECOVERY VEHICLE, FT, HEAVY, W/EQUIP 0 0.0679 2,400,000 
A21797G 5820 TERMINAL, RADIO, TROPOSCATTER, DIGITAL 0 0.0125 1,500,000 
A21797G 5820 TERMINAL, RADIO, TROPOSCATTER, DIGITAL 0 0.0153 1,500,000 
A21797G 5820 TERMINAL, RADIO, TROPOSCATTER, DIGITAL 0 0.0153 1,500,000 
A23067G 2355 GROUND SENSOR SURVEILLANCE VEHICLE (GSSV) 0 0.0465 1,500,000 
A04997G 5895 DIGITAL TECHNICAL CONTROL (DTC) FACILITY 0 0.0253 1,213,000 
A04997G 5895 DIGITAL TECHNICAL CONTROL (DTC) FACILITY 0 0.0379 1,213,000 
A21797G 5820 TERMINAL, RADIO, TROPOSCATTER, DIGITAL 0 0.0176 1,000,000 

 

The same inaccuracy in the calculated ECC CARF values is observed for the rest of the 

140 ECC_MSs and the 12 ECC_LSs.  Thus, the CARFs generated for a non-trivial 

number of TAMCNs are not significantly different from zero.  Some of the CARFs 

affected include extremely high dollar value items, which means making allowancing 

decisions on ultimately unreliable CARF estimates could prove costly. 

2. Sensitivity Criteria Explained 

 Because implications such as authorized allowance decisions and materiel 

acquisitions can be based on these CARF values, it is necessary to identify the range of 

unacceptable values of the ECC estimates.  We measure what we call a sensitivity ratio to 

more effectively analyze the deviance from an acceptable range of values. Let the 90% 
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bootstrapped confidence interval for a particular TAMCN be given by , where L 

represents the lower limit and U represents the upper limit. Then, the sensitivity ratio is 

given by:  

. 
 With this sensitivity ratio calculation, a resulting value of 1.0 or greater suggests 

the upper bound is twice the lower bound. We have deemed all CARF_ECCs with 

Sensitivity Ratios exceeding 1.0 as unacceptable.  However, this subjective decision is 

ultimately up to the relevant decision maker, as such wide ranges may impact 

allowancing and budgeting decisions. 

a. ECC_LA 

For the low level of conflict and in the assault phase, a total of 611 

ECC_LAs have enough data to observe a sensitivity ratio analysis. Figure 3-1 shows the 

distribution of the sensitivity ratios for the ECC_LAs. Of the 611 TAMCNs with 

ECC_LAs, 82 (13%) have sensitivity ratios equal to or greater than 1.0. The maximum 

sensitivity ratio is 20.6. 

 

 

Figure 3-1. Sensitivity Ratio Interval Distribution for ECC_LA TAMCNs. 
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Only a sample of the top ECC_LA TAMCNs, and the FSCs they fall 

under, are presented in Table 3-3, for those that reach the highest number greater than 1.0 

when analyzing the resulting sensitivity ratio. These high values of resulting sensitivity 

are meaningful in that they represent those ECC values that are extremely sensitive to 

minimal data variations. This makes the ECC values very unreliable, in terms of their 

employment in proper calculations for any sort of regression fits and analysis. The 

nomenclature is included in these tables to emphasize the diversity of equipment that can 

be affected. 

Table 3-3. Sample of the Top 10 of ECC_LA CARF FSCs Failing Sensitivity Ratio 

FSC TAMCN NOMENCLATURE 
Interval 
Lower 
Bound 

Interval 
Upper 
Bound 

Sensitivity 
Criteria 

Ratio 
2355 A23067G GROUND SENSOR SURVEILLANCE VEHICLE  0.0005 0.0102 20.600 
2355 A23067G SENSOR SYSTEM, MONITOR, MOBILE 0.0005 0.0093 18.710 
5810 A80447G LIMITED MAINT SPARE PARTS KIT 0.0002 0.0036 15.310 
6930 A70847G ANALYZER, NETWORK 0.0002 0.0024 12.550 
8145 C44332E CONTAINER, QUADRUPLE (QUADCON) 1e-5 0.0001 7.000 
6930 A70847G LOCAL AREA NETWORK TEST SET 0.0003 0.0026 6.900 
2350 E00357K KIT, ARMOR, APPLIQUE 0.0301 0.2356 6.826 
8145 C44332E CONTAINER, QUADRUPLE (QUADCON) 1e-5 0.0001 6.450 
8145 C44332E CONTAINER, QUADRUPLE (QUADCON) 1e-5 0.0001 6.450 
2590 E09967M BLADE, MINE CLEARING 0.0030 0.0225 6.422 

 

The severity of the impact of these highly sensitive ECCs, identified in 

Table 3-3, can be also emphasized by the TAMCNs’ cost. The highest-priced items are 

listed in Table 3-3. Topping this list is the case of TAMCN A23067G, Ground Sensor 

Surveillance Vehicle, at $1.5 million, together with its respective Mobile Sensor Monitor 

System with a cost of $657,000. 

b. ECC_LS 

For the low level of conflict and in the sustainment phase, of a total of 519 

ECC_LSs, 303 (58%) have a sensitivity ratio equal to or greater than 1.0. This means that 

more than half of the available ECC_LSs could be considered extremely sensitive to 
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small fluctuations in the data provided for its calculations. Figure 3-2 shows the 

distribution of sensitivity ratios. The values can reach as high as a maximum of 15.36. 

 

 

Figure 3-2. Sensitivity Ratio Interval Distribution for ECC_LS TAMCNs. 

The TAMCNs with the 10 highest sensitivity ratios are presented in  

Table 3-4. TAMCNs with high sensitivity ratios are extremely sensitive to minimal data 

variations. With the nomenclature included in the table, we can observe equipment that is 

critical to the operating forces and combat operations. 

Table 3-4. Sample of the Top 10 of ECC_LS CARF FSCs Failing Sensitivity Ratio 

FSC TAMCN NOMENCLATURE 
Interval 
Lower 
Bound 

Interval 
Upper 
Bound 

Sensitivity 
Criteria 

Ratio 
3805 B00637B TRACTOR, RUBBER TIRE, ARTICULATED 

STEERING, MP 
0.0002 0.0034 15.360 

6150 B05797B DUMMY LOAD, GENERATOR SET, ELECT, 100KW, 
TRLR-MTD 

0.0003 0.0042 13.550 

6930 A70847G ANALYZER, NETWORK 0.0002 0.0024 12.550 
2320 D10627K TRUCK, CARGO, 7 TON, XLWB, W/WINCH 0.0003 0.0037 12.550 
5855 E19477B TEST SET, NIGHT VISION 0.0013 0.0161 11.550 
4930 B11357B REFUELING SYSTEM, EXPEDIENT, HELO 0.0016 0.0186 10.730 
2320 D08867K TRUCK CARGO ARMOR 22.5 TON, 10X10, (LVSR) 0.0004 0.0047 9.909 
2410 B24607B TRACTOR, FT, W/ANGLE BLADE 0.0002 0.0024 9.909 
6150 B05797B DUMMY LOAD, GENERATOR SET, ELECT, 100KW, 

TRLR-MTD 
0.0005 0.0052 9.000 

2355 E09467B LAV, COMMAND AND CONTROL (BN) 0.0047 0.0140 2.000 
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Among the sample of identified highly sensitive ECCs in Table 3-4, the 

highest-value item is TAMCN E09467B, Command and Control LAV, with a cost of  

$3.25 million. 

c. ECC_MA 

For the medium level of conflict, in the assault phase, of a total of 611 

ECC_MAs, 176 have a ratio equal to or greater than 1.0. Almost 30% of the available 

ECC_MAs can be considered extremely sensitive to small fluctuations in the data 

provided for their calculations. 

Figure 3-3 shows the distribution of sensitivity ratios. The values can 

reach an extreme maximum of 98, which is indicative of a very unreliable ECC. 

 

 

Figure 3-3. Sensitivity Ratio Interval Distribution for ECC_MAs TAMCNs. 

A sample of the 10 TAMCNs with the highest sensitivity ratios are 

presented in Table 3-5. As for the ECC_LAs and ECC_LSs, TAMCNs with high 

sensitivity ratios are extremely sensitive to minimal data variations. 
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Table 3-5. Sample of the Top 10 of  ECC_MA CARF FSCs Failing Sensitivity Ratio 

FSC TAMCN NOMENCLATURE 
Interval 
Lower 
Bound 

Interval 
Upper 
Bound 

Sensitivity 
Criteria 

Ratio 
2355 A23067G GROUND SENSOR SURVEILLANCE VEHICLE 0.0005 0.0469 98.00 
2355 A23067G SENSOR SYSTEM, MONITOR, MOBILE 0.0005 0.0427 89.00 
5810 A80447G LIMITED MAINT SPARE PARTS KIT 0.0002 0.0121 53.81 
5855 E19097B TEST SET, BORESIGHT COLLIMATOR 0.0024 0.0806 33.10 
5820 A00757G ARCHIVED TAMCN 0.0001 0.0026 27.66 
1240 E17802E SIGHT, BORE, MORTAR, W/CASE 0.0003 0.0063 21.96 
5820 A21717GL RADIO SET, VEHICULAR 0.0006 0.0124 20.27 
1240 E17802E SIGHT, BORE, MORTAR, W/CASE 0.0003 0.0056 19.10 
5820 A21717G RADIO SET, VEHICULAR 0.0006 0.0109 17.63 
5820 A21717GK RADIO SET, VEHICULAR 0.0006 0.0109 17.63 

 

Among the samples of identified highly sensitive ECC_MAs in Table 3-5, 

the highest-value item is also TAMCN A23067G, Ground Sensor Surveillance Vehicle, 

with a cost of $1.5 million. 

d. ECC_MS 

Finally, for the medium level of conflict and in the sustainment phase, of a 

total of 514 ECC_MSs, 357 have a sensitivity ratio equal to or greater than 1.0.  

Figure 3-4 shows the distribution of sensitivity ratios. The values can reach a maximum 

of 36.2. 

 

 

Figure 3-4. Sensitivity Ratio Interval Distribution for ECC_MSs TAMCNs. 
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The TAMCNs with the 10 highest sensitivity ratios for ECC_MSs are 

presented in Table 3-6. In addition, TAMCNs with high sensitivity ratios are extremely 

sensitive to minimal data variations. Their close resemblance to the TAMCNs depicted in 

Table 3-2 for the results of ECC_LSs is evident. 

Table 3-6. Sample of the Top 10 of the ECC_MS CARF FSCs Failing Sensitivity 
Ratio 

FSC TAMCN NOMENCLATURE 
Interval 
Lower 
Bound 

Interval 
Upper 
Bound 

Sensitivity 
Criteria 

Ratio 
2320 D10627K TRUCK, CARGO, 7 TON, XLWB, W/WINCH 0.0006 0.0215 36.170 
2320 D10627K TRUCK, CHASSIS, XLWB, 7 TON, W/WINCH 0.0011 0.0185 16.640 
6930 A70847G ANALYZER, NETWORK 0.0008 0.0129 15.850 
3805 B00637B TRACTOR, RUBBER TIRE, ARTICULATED STEERING, MP 0.0004 0.0055 14.680 
2320 D10627K TRUCK, RTAA, CHASSIS, XLWB, 7 TON, W/WINCH 0.0011 0.0143 12.630 
2410 B24607B TRACTOR, FT, W/ANGLE BLADE 0.0011 0.0141 11.590 
2430 B24627B TRACTOR, FT, MEDIUM (CATERPILLAR) 0.0026 0.0302 10.730 
2320 D08867K TRUCK CARGO ARMOR 22.5 TON, 10X10, (LVSR) 0.0005 0.0050 9.909 
2355 E09467B LAV, COMMAND AND CONTROL (BN) 0.0167 0.0632 2.780 
2355 E09477M LAV, LIGHT ASSAULT, 25MM 0.0065 0.0179 1.750 

 

Specifically, we can see TAMCN E09467B, the Command and Control 

LAV, as the highest-value item, with a cost of $3.25 million, followed by TAMCN 

E09477B, the Light Assault LAV, with a cost of $3.22 million. 

While some of the FSCs represented in these tables refer to items of low-

cost value, certain TAMCNs are essential combat assets of elevated monetary value in 

which an extreme sensitivity to minimal changes, identified in their ECC calculations, 

can have a harmful impact on the operating forces. Caution is also strongly emphasized 

since some of these high-dollar-value items affected by such small fluctuations in the 

available data may have elevated and widespread effects on the overall acquisition 

authorized allowances. 

Bootstrapping over the losses provides an example of a possible way to 

test sensitivity of calculations based on relatively limited usage data.  By creating a test, 

or confidence interval we can provide a metric that can be used to compare the original 

historical data values presented and the predicted values obtained from methodology 

calculations. In this case, the results reveal that there is more sensitivity to small 
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fluctuations to data values in the sustainment phases than there is in the assault phases. 

This points to the observation that the existence of usage data does not necessarily ensure 

robust ECCs.  

B. ANALYZING COMPATABILITY OF CURRENT FSC AND FSG 
REGRESSION MODELS 

 We were unable to replicate the Poisson regression models implemented  

in the legacy method for building FSC and FSG regression models.  The sample of  

this regression model for an given FSC (FSG) is given by: 

, 

and is applied to every level and phase of conflict, i.e., ECC_LA, ECC_LS, etc. 

 Because there are 155 FSCs, less than 49 FSGs, and as many as four regression 

models to build for each, constructing these models in JMP is highly inefficient and 

tedious. We import the data into SAS (see www.sas.com), build the regression models, 

and achieve a more efficient way to observe results. 

1. FSC Regression 

 With the current FSC regression CARF (CRC) methodology we observe results 

that were inconsistent with a properly fitted model. We fit a GLM using a Poisson 

distribution and a log link function. Our response variable is ECC_XX and the covariates 

are AAO_TOTAL, BEST_COST and AO_TOTAL*BEST_COST. For these, none of the 

Chi-Square tests are sufficient; most of the resulting F-statistics are greater than 0.9; and 

none of the p-values for any of the parameter estimates and their interactions are less than 

0.5, with most of them remaining above 0.7. These are symptoms of a poorly fitted model 

in which the distribution is wrongfully determined for its proper employment, rendering 

the resulting models invalid. 

 We present an example of the GLM fit model results in an attempt to replicate the 

methodology suggested in the draft version of a contracted 2011 CARF study. This 

example is for FSC 2320, mostly rolling stock, i.e., MTVR 7-ton, refuelers, many 

HMMWV variants, etc., and comprising a total of 181 different TAMCNs. The results in 

this section are only for the response variable ECC_LA and are presented in Figure 3-5. 

Loge CARF ECC _ XX( )=βo +β1 AAO_TOTAL( )+β2 BEST _COST( )+β3 AAO_TOTAL*BEST _COST( )
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The rest of the results for response variables ECC_LS, ECC_MA, and ECC_MS can be 

found in Appendix D. A sample of the complete resulting files for the rest of the FSCs 

can be found in Appendix E (SAS Excel file). The complete electronic file can be made 

available on request. 

 

 

Figure 3-5. GLM Fit for CARF FSC 2320 Y=ECC_LA. 

 

Generalized Linear Model Fit FSC=2320 
Response: ECC_LA 
Distribution: Poisson 
Link: Log 
Estimation Method : Maximum Likelihood 
Observations (or Sum Wgts) = 84 
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L-R 
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Effect Tests 
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AAO_TOTAL 
BEST_COST 
AAO_ TOTAL*BEST _COST 

Parameter Estimates 

OF Prob>ChiSq 
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L-R 
OF ChiSquare Prob>ChiSq 

0.1814729 0.6701 
0.0024058 
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0.9609 
0.8322 

Term Estimate Std Error 
Intercept -2.90543 1.1292597 
AAO_TOTAL -8.232e-6 0.0000215 
BEST _COST -2.375e-7 4.8426e-6 
{AAO_ TOTAL-21504.7)*(BEST _COST-201152) 5.207e-11 2.438e-10 

Studentized Deviance Residual by Predicted 
0.3 

0.2 
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"0 
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-0.2 
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ECC_LA Predicted 

L-R 
ChiSquare Prob>ChiSq Lower CL Upper CL 
5.5141082 0.0189* -5.55397 -0.524541 
0.1814729 0.6701 -8.253e-5 2.225e-5 
0.0024058 0.9609 -1.121e-5 1.1766e-5 
0.0449193 0.8322 -3.49e-10 3.865e-10 
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From the JMP output presented in Figure 3-5, we observe less than optimal 

results, where the effects test and parameter estimates show p-values 0.6701 for 

AAO_TOTAL, 0.9601 for BEST_COST, and 0.832 for AAO_TOTAL*BEST_COST. 

All remaining figures show the numeric significance predictors at similar and less than 

optimal results. 

Table 3-7 summarizes the results and presents the number of valid models 

obtained in the previously mentioned FSC CARF methodologies, where a valid model is 

one that has at least one statistically significant term with a p-value of less than 0.1. None 

of these responses are valid models. 

Table 3-7. Number of Valid Models in CARF FSC Regression (CRC) 

Model Described Number of Valid Models 
Generated from Total 

Total Number of Models with 
Data Available for Analysis 

Original CRC LA 0 58 
Original CRC LS 0 87 
Original CRC MA 0 58 
Original CRC MS 0 87 

 

2. FSG Regression 

 Similar results are observed for the current FSG regression CARF (GRC) 

methodology, where inconsistency remains indicative of a poorly fitted model as a result 

of using a Poisson distribution, a GLM personality with a log link function, the 

AAO_TOTAL, BEST_COST, and the interaction AAO_TOTAL*BEST_COST as the 

influential terms or numeric predictors. All Chi-Square tests are insufficient, the resulting 

F-statistics are greater than 0.9, and none of the p-values for any of the parameter 

estimates and their interactions show less than 0.5, with most of them remaining well 

above 0.7. These, as well, are symptoms of improperly fitted and invalid models. 

 An example of the GLM fit model results for FSG 12, Fire Control Equipment, 

which comprises a total of 22 different TAMCNs, of which only seven have ECCs, is 

presented in Figure 3-6 and, as in the previous example, only the results for response 

variable ECC_LA are presented. The rest can be found in Appendix F for response 
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variable ECC_LS, ECC_MA and ECC_MS. A sample of the complete resulting files for 

the rest of the FSGs can also be found in Appendix G (SAS Excel file). The complete 

electronic file can be made available on request. 

 

 

Figure 3-6. GLM Fit for CARF FSG 12 with Y=ECC_LA. 
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 From the JMP output presented in Figure 3-6, we can observe the same less than 

optimal results in the FSG 12 GLM regression. Here, the effects test and parameter 

estimates show p-values above 0.95 for all numeric predictor terms. Similar invalid 

results are observed for the rest of the GLM regressions for this FSG, and presented in 

the appropriate appendix. 

 Table 3-8 is a summary of the number of valid models obtained, where a valid 

model is one that has at least one term significance with a p-value of less than 0.1, when 

performing the fitting of the model for the proposed CARF methodology for calculating 

GRCs. As the same results obtained for FSC 2320, none of these models are valid. 

Table 3-8. Number of Valid Models in CARF FSG Regression (GRC) 

Model Described Number of Valid Models 
Generated from Total 

Total Number of Models with 
Data Available for Analysis 

Original GRC LA 0 28 
Original GRC LS 0 36 
Original GRC MA 0 28 
Original GRC MS 0 36 

 

The results presented in this section are the results obtained in performing the 

research for this thesis. While a full effort was made to replicate the exact procedure 

employed in the source code provided in the JMP file, the same exact resulting values of 

the calculations were not obtained. The obtained values point to inconsistent models with 

less desirable regression fits and where no models show validity. The effects of invalid 

regression models observed in obtaining CRC values are further noticed when obtaining 

GRC values. 

C. ORDINARY LEAST SQUARES (OLS) FSC AND FSG REGRESSION 

 In this section, because we were unable to recreate the CRCs and GRCs using 

GLM, we construct corresponding regression models using Ordinary Least Squares.  The 

results obtained under this approach are a major improvement in terms of model 

performance and number of CRCs and GRCs generated. The F-statistics obtained and the 

overall p-values observed, on some of the CRC and GRC regressions, are of a more 
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acceptable statistical significance for the numeric predictors used. When the OLS 

regression fits are subjected to the same threshold as the GLM regressions, an F-statistic 

lower than 0.1 and at least one of the regression terms with a p-value of less than 0.1, we 

observe that, in some cases these fits become valid for the different levels and phases of 

conflict. We also observe that some of these better-behaved models make a more efficient 

use of the sparse historical data available, although such is not always the case. 

1. OLS FSC Regression 

 For the OLS FSC regression, we use the same example of FSC 2320 as is used for 

the GLM regressed FSC CARF (CRC) methodology. Better-behaved models, showing 

consistency in the numeric predictors used and statistical significance in the terms’ p-

values, are observed. The results of this are presented in Table 3-9 for FSC ECC_LA, 

Table 3-10 for FSC ECC_LS, Table 3-11 for FSC ECC_MA, and Table 3-12 for FSC 

ECC_MS. Each table shows the resulting p-values for each of the terms used in the OLS 

regression and the estimate value, the standard error resulted, and the t value, for each 

coefficient. All of these OLS regression samples for FSC 2320 result in valid models. 

Although the resulting p-values for the interaction term AAO_TOTAL*BEST_COST 

remain above the significance threshold of 0.1, the rest of the terms for the OLS 

regressed example FSC 2320 remain at significant p-values well below 0.1. 

Table 3-9. OLS fit for CARF FSC 2320 for Y=ECC_LA 

OLS REGRESSED CARF FSC LA FSC 2320 
Coefficients Estimate Std. Error t value Pr( > | t | ) 
Intercept 0.065 0.005 12.28 4.13e-20 
AAO_TOTAL –5.61e-7 2.17e-7 –2.58 0.0115 
BEST_COST –6.39e-8 2.43e-8 –2.62 0.0102 
AAO_TOTAL*BEST_COST 1.53e-12 1.11e-12 1.37 0.1734 

Table 3-10. OLS fit for CARF FSC 2320 for Y=ECC_LS 
OLS REGRESSED CARF FSC LS FSC 2320 
Coefficients Estimate Std. Error t value Pr( > | t | ) 
Intercept 0.006 0.0008 7.51 7.20e-11 
AAO_TOTAL –7.08e-8 3.37e-8 –2.09 0.0390 
BEST_COST –1.06e-8 3.77e-9 –2.81 0.0061 
AAO_TOTAL*BEST_COST 2.47e-13 1.73e-13 1.43 0.1560 
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Table 3-11. OLS fit for CARF FSC 2320 for Y=ECC_MA 
OLS REGRESSED CARF FSC MA FSC 2320 
Coefficients Estimate Std. Error t value Pr( > | t | ) 
Intercept 0.074 0.005 12.87 3.39e-21 
AAO_TOTAL –6.34e-7 2.37e-7 –2.66 0.0092 
BEST_COST –7.94e-8 2.66e-8 –2.98 0.0037 
AAO_TOTAL*BEST_COST 1.65e-12 1.22e-12 1.35 0.1790 

Table 3-12. OLS fit for CARF FSC 2320 for Y=ECC_MS 
OLS REGRESSED CARF FSC MS FSC 2320 
Coefficients Estimate Std. Error t value Pr( > | t | ) 
Intercept 0.015 0.001 8.69 3.51e-13 
AAO_TOTAL –1.43e-7 7.44e-8 –1.93 0.0568 
BEST_COST –2.62e-8 8.32e-9 –3.14 0.0023 
AAO_TOTAL*BEST_COST 3.71e-13 3.81e-13 0.97 0.3335 

 

As a result of the OLS modeling methodology, we obtain more valid models 

when compared to the proposed methodology approach. Table 3-13 is a summary of the 

number of valid models obtained, where, once again, a valid model is one that has at least 

one term significance with a p-value of less than 0.1, when performing the fitting of the 

model using a OLS regression method for calculating CARF FSCs. 

Table 3-13. Number of Valid Models in OLS CRC CARF Regression 

Model Described 

Total Number of 
Models with Data 

Available for 
Analysis 

Number of Valid 
Models Generated 

from Total 

Total Number of 
TAMCN (CEC 1) 
CRCs Generated  

by OLS 

Number of CARF 
CRCs Generated  

by GLM 

OLS CRC LA 58 13 270 190 
OLS CRC LS 87 16 496 197 
OLS CRC MA 58 14 369 2 
OLS CRC MS 87 16 586 3 
 

In this table, the “Total Number of Models with Data Available for Analysis” 

column, expressed by the applicable CRC level and phase of conflict, represents the 

overall number of models observed to have all the data necessary to perform the analysis. 

The “Number of Valid Models Generated from Total” refers to the results of the validity 

comparison for term significance from the previous column totals. The “Total number of 
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TAMCN (CEC 1) CRCs Generated” provides the total possible number of TAMCNs that 

have been assigned a CRC value, only for CEC 1, and only for that level and phase of 

conflict. The last column is provided for the purpose of comparison to the original totals 

obtained from the file provided for the study of this thesis as part of a draft version of a 

originally proposed CARF methodology and refers to the total CARF values assigned. 

This same description applies to the rest of these similar tables presented in this section. 

OLS produces a substantially higher number of CRCs than does GLM, especially for MA 

and MS levels. 

2. OLS FSG Regression 

Better-behaved models showing consistency in the numeric predictors used and 

statistical significance in the terms’ p-values are observed when we follow an  

OLS-regressed FSG CARF methodology (GRC) for the same example of FSG 12, as is 

used in the GLM-regressed GRC methodology. The results of these are presented in 

Tables 3–14 for FSG ECC_LA, 3–15 for FSG ECC_LS, 3–16 for FSG ECC_MA, and  

3–17 for FSG ECC_MS. Each table shows the resulting p-values, the estimate value, the 

standard error resulted, and the t value for each coefficient. All the models for FSG 12 are 

valid, showing an improvement for term significance p-values, with most of them 

remaining below 0.1. A few exceptions are observed, as is the case of the value for the 

AAO_TOTAL and the interaction term, when the response variable is ECC_LS and 

ECC_MS. Nevertheless, the rest of the regressed model fits remain valid based on our 

previously established validity threshold. 

Table 3-14. OLS CARF FSG 12 fit for Y=ECC_LA 
OLS REGRESSED CARF FSG LA FSG 12 
Coefficients Estimate Std. Error t value Pr( > | t | ) 
Intercept -.0003 0.0009 -0.430 0.6891 
AAO_TOTAL 1.37e-7 5.16e-8 2.65 0.0565 
BEST_COST 1.48e-7 5.98e-8 2.48 0.0679 
AAO_TOTAL*BEST_COST -5.67e-12 2.54e-12 -2.23 0.0893 
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Table 3-15. OLS CARF FSG 12 fit for Y=ECC_LS 
OLS REGRESSED CARF FSG LS FSG 12 
Coefficients Estimate Std. Error t value Pr( > | t | ) 
Intercept 0.0003 0.0001 3.21 0.0092 
AAO_TOTAL -.43e-12 4.34e-10 -0.01 0.9848 
BEST_COST 7.26e-8 1.65e-8 4.39 0.0013 
AAO_TOTAL*BEST_COST 2.32e-13 4.24e-13 0.54 0.5965 

Table 3-16. OLS CARF FSG 12 fit for Y=ECC_MA 
OLS REGRESSED CARF FSG MA FSG 12 
Coefficients Estimate Std. Error t value Pr( > | t | ) 
Intercept 0.00008 0.0007 0.107 0.9193 
AAO_TOTAL 1.70e-7 4.31e-8 3.95 0.0167 
BEST_COST 4.19e-7 4.99e-8 8.39 0.0011 
AAO_TOTAL*BEST_COST -.14e-12 2.12e-12 -2.89 0.0443 

Table 3-17. OLS CARF FSG 12 fit for Y=ECC_MS 
OLS REGRESSED CARF FSG MS FSG 12 
Coefficients Estimate Std. Error t value Pr( > | t | ) 
Intercept 0.001 0.0003 3.25 0.0086 
AAO_TOTAL -.80e-10 1.24e-9 -0.70 0.4951 
BEST_COST 3.36e-7 4.73e-8 7.10 0.00003 
AAO_TOTAL*BEST_COST 1.16e-12 1.21e-12 0.95 0.3602 

 

Table 3-18 is a summary of the number of valid models obtained, where a valid 

model is one that has at least one term significance with a p-value of less than 0.1, when 

performing the fit using OLS methodology for GRCs. 

Table 3-18. Number of Valid Models in OLS GRC CARF Regression 

Model Described 

Total Number of 
Models with Data 

Available for 
Analysis 

Number of Valid 
Models Generated 

from Total 

Total Number of 
TAMCN (CEC 1) 
GRCs Generated 

by OLS 

Number of 
CARF GRCs 
Generated by 

GLM 
OLS GRC LA 28 11 398 46 
OLS GRC LS 36 11 406 51 
OLS GRC MA 28 11 707 59 
OLS GRC MS 36 10 605 65 
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3. OLS Aggregate FSG Regression (by ECC and FSC) 

Though the draft version of CARF methodology mentions that every GRC 

regression model is built on the results of the ECCs obtained and the CRC regressions, 

we are unable to identify specific traces that could show this approach was performed. 

With that in mind, we test the result that can be obtained by following the specific 

assignment algorithm in the decision flow map, presented in Figure 1-1, for a proposed 

FY2011 CARF assignment methodology. In doing so, the previously calculated ECCs 

and the obtained FSC CARFs (CRCs), for all levels and phases of conflict, are provided 

as inputs to the constructed model used to obtain FSG CARFs (GRCs). The results of 

such an approach under an OLS methodology, using the previously employed example of 

FSG 12, are presented in Tables 3-19 for CARF FSG LA, 3–20 for CARF FSG LS, 3–21 

for CARF FSG MA, and 3-22 for CARF FSG MS. In addition, each table shows the 

resulting p-values, the estimate value, the standard error resulted, and the t value for each 

coefficient. With the exception of the regressed fit when the response variables of 

ECC_LS and ECC_MS are used, the rest are very stable and valid models. Even with the 

explicit exceptions, at least one term—in both cases, the interaction term—remains well 

below a p-value of 0.1, making the overall regression fit good, thus suggesting a valid 

model. 

Table 3-19. OLS CARF FSG 12 LA (created by ECCs and FSC inputs) 
OLS REGRESSED CARF FSG LA (Using ECCs and FSCs)               FSG 12 
Coefficients Estimate Std. Error t value Pr( > | t | ) 
Intercept -.038 0.0166 -2.29 0.1050 
AAO_TOTAL 0.00006 0.00001 5.06 0.0148 
BEST_COST 2.02e-7 3.83e-8 5.28 0.0132 
AAO_TOTAL*BEST_COST -7.62e-10 1.33e-10 -5.70 0.0106 

Table 3-20. OLS CARF FSG 12 LS (created by ECCs and FSC inputs) 
OLS REGRESSED CARF FSG LS (Using ECCs and FSCs)             FSG 12 
Coefficients Estimate Std. Error t value Pr( > | t | ) 
Intercept 0.004 0.0006 6.17 0.0034 
AAO_TOTAL -.32e-9 4.73e-9 -0.49 0.6494 
BEST_COST 1.01e-9 6.70e-10 1.51 0.2050 
AAO_TOTAL*BEST_COST -8.33e-12 1.93e-12 -4.31 0.0125 
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Table 3-21. OLS CARF FSG 12 MA (created by ECCs and FSC inputs) 
OLS REGRESSED CARF FSG MA (Using ECCs and FSCs)         FSG 12 
Coefficients Estimate Std. Error t value Pr( > | t | ) 
Intercept -.04 0.018 -2.14 0.1210 
AAO_TOTAL 0.00007 0.00001 4.95 0.0157 
BEST_COST 2.23e-7 4.31e-8 5.18 0.0139 
AAO_TOTAL*BEST_COST -8.44e-10 1.50e-10 -5.61 0.0111 

Table 3-22. OLS CARF FSG 12 MS (created by ECCs and FSC inputs) 
OLS REGRESSED CARF FSG MS (Using ECCs and FSCs)         FSG 12 
Coefficients Estimate Std. Error t value Pr( > | t | ) 
Intercept 0.01 0.001 5.53 0.0052 
AAO_TOTAL -.94e-9 1.34e-8 -0.29 0.7831 
BEST_COST 2.45e-9 1.89e-9 1.29 0.2652 
AAO_TOTAL*BEST_COST -2.11e-11 5.47e-12 -3.85 0.0182 

 

Table 3-23 is a summary of the number of valid models obtained when 

aggregating ECCs and CRCs to calculate GRCs, identified in the table as OLS 

AGGREGATE GRC XX, where a valid model is one that has at least one term 

significance with a p-value of less than 0.1. 

Table 3-23. Number of Valid Models in CARF FSG OLS Regression (created with 
ECC and CRC input) Methodology 

Model Described 

Total Number of 
Models with Data 

Available for 
Analysis 

Number of 
Valid Models 

Generated 
from Total 

Total Number of 
TAMCN (CEC 1) 
GRCs Generated 

Number of 
CARF GRCs 
Assigned by 

GLM 
OLS AGGREGATED GRC LA 55 16 540 46 
OLS AGGREGATED GRC LS 60 14 414 51 
OLS AGGREGATED GRC MA 55 12 308 59 
OLS AGGREGATED GRC MS 60 16 708 65 

 

Looking at the number of resulting models of the aggregated OLS GRC 

methodology, we see an increase obtained from making use of the available calculated 

values of ECCs and CRCs. Both the number of models with data available for analysis, 

followed by the number of valid models obtained, provide the resulting increase in 

overall TAMCNs able to have a calculated CARF CRC model. The last column in  
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Tables 3-22 and 3-23 present the results of the originally reported GRC models from 

Table 2-3. The increase, obtained when following an OLS and an OLS aggregated 

approach in usable models, is indicative of an improvement and of another possible 

approach in which further research could be invested. It is also prudent to emphasize here 

that the results presented for OLS regression have been of an exploratory nature and have 

not been fully validated by this thesis. Furthermore, no other analytical parameters than 

the ones mentioned here were specifically traced or studied with the intention to validate 

the before-mentioned procedure. Nevertheless, in finding the results depicted in this 

section, the need for further research into more robust and less labor-intensive practices 

and methodologies has become evident. 

D. CROSS-VALIDATION APPROACH TO IDENTIFY DATA 
SUFFICIENCY FOR EFFECTIVE ANALYSIS 

 In this section, we cross validate a small sample of our regression models. The 

primary intent is to evaluate the performance of the models, but we also hope to gain 

some insight in determining how sensitive the models are to gaps in the data. 

 In every trial, we withhold different percentages of the available TAMCNs data. 

With this, we can run the regression models and compare the accuracy of that individual 

model to produce resulting values similar to those from the originally regressed values of 

the data withheld. In every case, the percentages of data withheld are 20%, 15%, and 

10%. The examples we use are FSCs 2320 and 5820 and FSG 23. These FSCs and FSG 

are personally chosen because of their amount of available CEC 1 TAMCNs with 

available data and because of their primary importance, as rolling stock and 

communications equipment, to the operating forces. 

 Every example that follows employs the OLS-regressed procedure and presents 

the resulting summary of fit of that particular model, in every level and phase of conflict, 

having the specific percentage of data withheld and the explanation of the total numbers 

used. Also presented are the observed results’ distributions for that specific percentage of 

data withheld and the resulting predicted values. A table at the end of every example 

compiles these resulting numbers and identifies which ones remained inside the  

90-percentile confidence interval, which was explained in Section A of this chapter. For 
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the FSG example, only results for conflict level and phases LA and MS are presented 

with the intention of just emphasizing the most relevant results. 

1. Example Using FSC 2320, Wheeled Trucks and Truck Tractors 

Using the previous example of FSC 2320, where a total of 181 TAMCNs are 

available and we have originally 84 ECC_LAs, ECC_LSs, ECC_MAs, and ECC_MSs, 

we perform a cross validation in order to identify symptoms the regression would show 

when randomly withholding 20% (17 of the 84 observations withheld) of the available 

data. Figure 3-7 shows the resulting values for the OLS regression fit for ECC_LA. 

 

 

 

Figure 3-7. OLS Fit for CARF FSC 2320 with Y=ECC_LA When 20% of TAMCN 
Data is Withheld. 

 In this example, there is only one numeric predictor term with a p-value of less 

than 0.1 and one that closely approaches that threshold. These are sufficient enough 

results to observe this regression fit as valid based on our previously established model 

validity criteria of at least one term’s p-value being less than 0.1. 



 43 

 The distribution of the withheld data for comparison of the results of the cross 

validation procedure is presented in Figure 3-8. The distribution of the original ECC_LAs 

shows a wide range (0.0032, 0.1077), while the distribution for the predicted CRC_LAs, 

with 20% data randomly withheld, shows a very much-restricted range, (0.0404, 0.0626). 

This, in turn, translates not into predicted values remaining inside the wide range of 

original values, but actually failing to remain inside the previously calculated confidence 

interval, as presented in Table 3-24. 

 

 

Figure 3-8. Comparison Distributions of Original ECC_LA and Predicted CRC_LA 
for the 20% Withheld. 
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Table 3-24. Predicted CRC_LA and Original ECC_LA comparison with CI, for the 
20% withheld 

TAMCN ECC_LA 
Original 

Predicted 
CRC_LA 

Interval 
Lower Bound 

Interval 
Upper Bound Predicted CRC_LA in CI 

D00337KA 0.0033 0.0543 0.0031 0.0037 No 
D01987K 0.0429 0.0404 0.0420 0.0439 No 
D01987K 0.0429 0.0404 0.0421 0.0437 No 
D01987KA 0.0429 0.0512 0.0422 0.0438 No 
D02097K 0.1049 0.0416 0.1040 0.1058 No 
D08777K 0.0314 0.0512 0.0292 0.0373 No 
D08817K 0.0569 0.0530 0.0550 0.0597 No 
D08867K 0.0180 0.0419 0.0161 0.0204 No 
D10627K 0.0377 0.0469 0.0362 0.0397 No 
D10627K 0.0377 0.0426 0.0362 0.0397 No 
D10727K 0.1078 0.0527 0.1016 0.1144 No 
D10737K 0.0289 0.0440 0.0282 0.0302 No 
D11257K 0.0481 0.0626 0.0452 0.0508 No 
D11587KA 0.0678 0.0609 0.0671 0.0683 No 
D11597K 0.0558 0.0601 0.0556 0.0560 No 
D11597K 0.0558 0.0595 0.0556 0.0560 No 
D12137K 0.0516 0.0412 0.0493 0.0541 No 

 

In Table 3-24, we can observe the obtained predicted CRC values for the LA, 

only for the 20% data randomly withheld, as compared to the originally obtained ECC 

values. The lower and upper interval columns are from the calculated confidence 

intervals obtained and presented in Section A of this chapter. The last column of this 

table confirms if the obtained predicted value falls inside that confidence interval. In this 

case, there are no predicted CRC_LAs that meet this criteria. For  FSC 2320 with an LA 

level and phase of conflict, even missing just 20% of TAMCNs with available data (i.e., 

17 of 84) renders the regressed CRC values unreliable. 

The rest of these figures and tables have been omitted here, but can be found in 

Appendix H. The compiled results have been properly tabulated and are discussed at the 

end of this section. 

When we withhold roughly 15% (12 of the 84 TAMCNs) and 10% (8 of the 84 

TAMCNs) of the available data for the same FSC 2320, the resulting summary of fits for 

ECC_LA show valid regressions. Nevertheless, even when only withholding 10% of the 

data, the results do not improve. None of the obtained predicted CRC values in both cases 
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remain inside the determined confidence interval. For this level and phase of conflict, the 

regressed CRC values are likely marginally reliable. 

Following the same cross-validation approach on FSC 2320, with a 20% of 

TAMCN data randomly withheld, for ECC_LS we can observe that the regression fit 

remains valid when we consider that the cross-effect term has a resulting p-value of less 

than 0.1, as shown in Figure 3-9. 
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Figure 3-9. OLS Fit for CARF FSC 2320 with Y=ECC_LS When 20% of TAMCN 
Data is Withheld. 

 

Figure 3-10. Comparison of Distributions of Original ECC_LS and Predicted CRC_LS 
for the 20% Withheld. 
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 The distributions presented in Figure 3-10 for the original ECC_LSs and the 

predicted CRC_LSs show similar results than those of the distributions presented for 

ECC_LA and the predicted CRC_LA, but for this level and phase of conflict, when we 

compare the resulting predicted CRC values to the previously established confidence 

intervals, we are able to identify that seven of the 17 TAMCNs (Table 3-25) with data 

that were randomly selected and withheld were predicted values that remained inside the 

mentioned interval. This suggests that, in this level and phase of conflict, and possibly 

because the available data is less sparse here, we are still able to consider valuable the 

reliance on some of the predicted values. 

Table 3-25. Predicted CRC_LS and Original ECC_LS Comparison with CI, for the 
20% Withheld 

TAMCN ECC_LS 
Original 

Predicted 
CRC_LS 

Interval 
Lower Bound 

Interval 
Upper Bound Predicted CRC_LS in CI 

D00337KA 0.0002 0.0044 0.0001 0.0006 No 
D01987K 0.0035 0.0032 0.0027 0.0046 Yes 
D01987K 0.0035 0.0032 0.0027 0.0044 Yes 
D01987KA 0.0035 0.0039 0.0028 0.0044 Yes 
D02097K 0.0044 0.0031 0.0035 0.0052 No 
D08777K 0.0082 0.0039 0.0060 0.0142 No 
D08817K 0.0079 0.0044 0.0061 0.0108 No 
D08867K 0.0024 0.0030 0.0004 0.0047 Yes 
D10627K 0.0020 0.0034 0.0005 0.0040 Yes 
D10627K 0.0020 0.0026 0.0005 0.0040 Yes 
D10727K 0.0158 0.0041 0.0097 0.0225 No 
D10737K 0.0007 0.0028 0.0006 0.0020 No 
D11257K 0.0074 0.0059 0.0045 0.0102 Yes 
D11587KA 0.0042 0.0056 0.0035 0.0046 No 
D11597K 0.0002 0.0054 0.0001 0.0004 No 
D11597K 0.0002 0.0053 0.0001 0.0004 No 
D12137K 0.0037 0.0021 0.0014 0.0062 No 

 

The rest of these figures and tables have been omitted here, but can be found in 

Appendix H. The compiled results have been properly tabulated and are discussed at the 

end of this section. 

When randomly withholding 15% and 10% of the data on FSC 2320 for ECC_LS, 

the regression fits also remain valid. We also observe that as we withhold less data, in 
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this case and for this level and phase of conflict, the numbers of predicted CRC values 

that remain inside the confidence interval improve. This suggests that most of the 

predicted CRC values are still reliable. 

Similar results are observed when randomly withholding the same depicted 

amounts of data throughout the rest of this analysis for ECC_MAs and ECC_MSs. The 

rest of the results for FSC 2320, at every level and phase of conflict and with the different 

amount of TAMCN data withheld, are compiled in Table 3-26. Though we have 

established a flexible 90% confidence interval, only one model, CRC_LS, is able to show 

predicted values inside this interval at a mere 75%. As well, it is evident that CRC_LA 

shows no acceptable performance and does not maintain any predicted values inside the 

bootstrapped confidence interval developed. 

Table 3-26. Cross Validation Compiled Results for FSC 2320 

FSC       
2320 

20% Data Withheld  
(17 of 84) 

15% Data Withheld  
(12 of 84) 

10% Data Withheld  
(8 of 84) 

Number of CRCs 
in CI 

Percent in 
CI 

Number of CRCs 
in CI 

Percent in 
CI 

Number of CRCs 
in CI 

Percent in 
CI 

LA 0 of 17 0% 0 of 12 0% 1 of 9 0% 
LS 7 of 17 41% 6 of 12 50% 6 of 9 75% 
MA 3 of 17 18% 2 of 12 17% 3 of 9 25% 
MS 8 of 17 47% 6 of 12 50% 6 of 9 50% 

 

 When comparing the overall results of the cross-validation for FSC 2320, we can 

observe that the assault phases for both levels of conflict are the ones with the least 

resiliency and least reliability for predicted CRC values. As far as the low and medium 

levels, in the sustainment phases, we see that even when we withhold 10% of the data the 

model has trouble generating estimates that are inside the bootstrapped CIs. 
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2. Example Using FSG 23, Motorized Vehicles 

For the cross-validation approach on an FSG, we used FSG 23, Motor Vehicles, 

Trailers, and Cycles, with a total of 324 TAMCNs CEC 1 available and broken down in 

FSCs, as shown in Figure 3-11. 

 

 

Figure 3-11. Number of TAMCNs in FSG 23 by FSC. 

From the original data, of these 324 TAMCNs, 180 each have ECC_LAs, 

ECC_LSs, ECC_MAs, and ECC_MSs. 

The resulting figures and tables for this cross validation have also been omitted 

here, but can be found in Appendix I. The compiled results have been properly tabulated 

and are discussed at the end of this section. 

The effects observed when randomly withholding 20% (36 of the 180 

observations withheld) of the available data and performing an OLS regression with the 

response variable as ECC_LA, show that the regression fit remains valid, but when we 

compare the resulting predicted CRC values to the previously established confidence 

intervals, only 2 of the 36 TAMCNs remained inside the mentioned interval. This 

suggests that, in this level and phase of conflict, and for this FSG, only some of these 

regressed predicted values could be considered reliable. 

The same results are observed when randomly withholding only 15% (27 of 180) 

of the data for the ECC_LA. The regression fit and none of the resulting predicted CRC 

values remain inside the mentioned interval. In withholding only 10% (18 of 180) of the 

data for ECC_LA, the regression fit remains valid with only 2 of the 18 predicted CRC 

values remaining inside the mentioned interval. 

The rest of the results for FSG 23, at every level and phase of conflict and with 

the different amount of TAMCN data withheld, are compiled in Table 3-27. 
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Table 3-27. Cross Validation Compiled Results for FSG 23 

FSG             
23* 

20% Data Withheld 
(36 of 180) 

15% Data Withheld 
(27 of 180) 

10% Data Withheld 
(18 of 180) 

Number of GRCs 
in CI 

Percent in 
CI 

Number of GRCs 
in CI 

Percent in 
CI 

Number of GRCs 
in CI 

Percent in 
CI 

LA 2 of 36 5% 0 of 27 0% 2 of 18 11% 
MS 11 of 36 31% 8 of 27 30% 5 of 18 28% 

* Only Conflict Levels LA and MS are represented in this table. 

 

We are able to identify a trend in which, even at 90% bootstrapped confidence 

intervals constructed from only 50 replications, predicted values rarely remain inside that 

interval. This should remain as a cause for concern, since it is a clear indication of the 

lack of robustness we are detecting. 

When comparing the overall results of the cross validation for FSG 23, we can 

observe an FSG that is very susceptible to changes in the data. For the low-level assault 

phase, it is observed that any missing data would create a substantial detrimental effect 

on the minimum amount of reliability currently obtained on this FSG’s predicted CRC 

values. For the MS level, missing any more than 20% of the data could create a further 

rippling effect on the reliability of the predicted CRC values. 

3. Example Using FSC 5820, Radio Communications Equipment 

Another example of cross validation is used with FSC 5820, Radio and Television 

Communications Equipment (except airborne), where a total of 171 TAMCNs CEC 1 are 

available and we have originally 87 TAMCNs with each, ECC_LSs and ECC_MSs, and 

86 TAMCNs with each, ECC_LAs and ECC_MAs. 

The resulting figures and tables for this cross validation have also been omitted 

here, but can be found in Appendix J. The compiled results have been properly tabulated 

and are discussed at the end of this section. 

The effects observed when randomly withholding 20% (17 of the 87) of the 

available data and performing an OLS regression, with the response variable as ECC_LA, 

show that the regression fit is valid with all of the numeric predictor terms’ resulting  
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p-value far below 0.1. When we compare the resulting predicted CRC values to the 

previously established confidence intervals, we are able to identify that only one of the 87 

TAMCNs, with data that were randomly selected and withheld, were predicted values 

that remained inside the mentioned interval. 

By randomly withholding only 15% (13 of 87) and 10% (9 of 87) of the data for 

ECC_LA, the regression fits remain perfectly valid with all the regression terms at very 

low p-values of at most 0.0012. Nevertheless, in both cases, we do not see an 

improvement when we compare the resulting predicted CRC values to the previously 

established confidence intervals, since only one of the 87 TAMCNs remained inside the 

mentioned interval. 

The effects observed when randomly withholding 20% (17 of the 87 withheld) of 

the available data and performing an OLS regression with the response variable as 

ECC_LS, show that the regression fit becomes invalid with all of the regression terms, 

hovering around 0.9. Comparing the resulting predicted CRC values to the previously 

established confidence intervals, 6 of the 17 TAMCNs were predicted values that 

remained inside the interval. 

When we randomly withhold only 15% and 10% of the data for ECC_LS, the 

regression fits remain invalid and all of the regression terms obtain p-values around 0.8. 

Yet, when we compare the resulting predicted CRC values to the previously established 

confidence intervals, on average, 40% remained inside the mentioned interval. 

Similar results are observed when randomly withholding the same depicted 

amounts of data throughout the rest of this analysis for ECC_MAs and ECC_MSs. The 

rest of the results for FSC 5820, at every level and phase of conflict and with the different 

amount of TAMCN data withheld, are compiled in Table 3-28. Also, as mentioned for 

FSC 2320, though we have established a flexible 90% confidence interval, there are only 

two models—in this case, CRC_LS and CRC_MS—that are able to show predicted 

values inside this interval, but only for 67% of the time. It is also evident that in the case 

of CRC_LA, though showing better results for FSC 5820 compared to the results of  

FSC 2320, the regression fit’s performance is unfavorable and does not provide any 

predicted values inside the above-mentioned confidence interval. 
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Table 3-28. Cross Validation Compiled Results for FSC 5820 

FSC        
5820 

20% Data Withheld 
(17 of 87) 

15% Data Withheld 
(13 of 87) 

10% Data Withheld 
(9 of 87) 

Number of CRCs 
in CI 

Percent in 
CI 

Number of CRCs 
in CI 

Percent in 
CI 

Number of CRCs 
in CI 

Percent in 
CI 

LA 1 of 17 6% 1 of 13 8% 1 of 9 11% 
LS 5 of 17 29% 4 of 13 31% 6 of 9 67% 
MA 1 of 17 6% 3 of 13 23% 3 of 9 33% 
MS 7 of 17 41% 7 of 13 54% 6 of 9 67% 

 

When comparing the overall results of the cross validation for FSC 5820, we can 

observe an FSC that has more consistent results, based on the greater availability of 

historical data. Although the regression fits are not perfectly valid, with some resulting in 

overwhelmingly invalid fits, we can see that LA remains unchanged through the process 

of comparing percentages of data missing. We can assume this FSC, and level and phase 

of conflict, to be lacking enough data to provide a sufficiently reliable regression model 

and predicted CRCs. 

The approach of gradually withholding data presented in this section, though 

labor-intensive, has the intention to demonstrate a method for exploring amount of data 

sufficiency. This is done in order to provide a means of identifying which amount of data 

would be necessary to replicate an efficient and valid model. In addition, from these few 

observations, it is evident that individual tests and studies seem to be necessary for every 

FSC and FSG when trying to pinpoint specific amounts of data required, if the intention 

is to obtain the most reliable and stable models for predicting CRCs and GRCs. We have 

also observed that every CRC and FSG reacts differently to the amount of data missing, 

not just because of the inherent equipment differences they are identified with, but also 

by the different levels and phases of conflict to which they apply. Improvements in 

consistency and accuracy in all types of data collected would be the overarching solution. 
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IV. CONCLUSIONS AND RECOMMENDATIONS 

A. SUMMARY OF FINDINGS 

A full effort was made to replicate the procedure employed in the source code 

provided in the JMP file, but the same exact resulting values of the calculations, as 

presented in an early version of a CARF study draft report, were not obtained. The results 

of our calculations point to inconsistent models with substantially less than desirable 

regression fits. 

1. ECC Sensitivity 

We generate 50 bootstrapped replications of the historic usage data to obtain a 

distribution of ECCs for those TAMNs with available usage data.  We show that based on 

the individual level and phase of conflict, many ECCs are significantly sensitive to 

minimal changes in the data with which they are calculated. We find that 12 of low level 

ECCs and 140 of medium level ECCs are not significantly different from zero.  The least 

sensitive was the ECC_LAs, where 82 of 611 showed high sensitivity, while the most 

sensitive was the ECC_MSs, with 357 of 514 being highly sensitive.  

2. GLM and OLS Comparison 

 We were unable to replicate the GLM regressions outlined in an early version of a 

CARF study draft report. Our results expressed that the fit of these models did not 

provide the validity necessary to predict reliable CRC or GRC values. Term significance 

in every one of these models was less than favorable. 

In comparison, an OLS approach had vast improvements in term significance and 

model validity. In most cases, we were able to obtain, on average, a 20% improvement in 

generating valid models across the levels and phases of conflict, which progressed into an 

increase in the number of CRCs and GRCs produced. For example, when observing 

CRCs for MSs, the increase goes from 3 to 586, and in GRCs for MAs, the increase goes 

from 59 to 707. No validation was performed in the entire OLS process. Employing OLS 
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regressions is representative of mainly exploratory intentions. Yet, the results obtained 

emphasize the need for further methodology research. 

B. RECOMMENDATIONS AND AREAS FOR FURTHER RESEARCH 

 We emphasize that accurate CARF calculations provide the planning flexibility to 

meet requirements of any conflict and operational plan. It is imperative to understand that 

CARFs are an indispensable tool in determining WRM stocks.   

1. Bootstrapping 

 The bootstrapping approach and analysis was only performed over casualties and 

only on 50 replications. Further simulation could be performed following the same 

presented approach over casualties with more than 1,000 replications.  This could yield a 

more fine-tuned method to further identify which parts of the data are more sensitive to 

greater fluctuations.  In addition, distributions of CRCs and GRCs could be attained by 

performing that analysis on each bootstrapped replication. 

2. Regression Analysis 

 Some of the regression analysis performed for this thesis was done within JMP in 

order to replicate the proposed procedures. Other regression analysis was performed in 

SAS statistical software, which is the case of the OLS results presented.  We recommend 

performing a comprehensive validation of each of the regression models built, to include 

analyzing the residuals to determine normality, homoscedasticity, and level of 

autocorrelation. 
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APPENDIX A 

Screen capture of the JMP file that contains both the data-table, as well as the 

scripts to perform most of the necessary calculations.  The first 39 rows of 6,137 are 

shown. 
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APPENDIX B 

Sample of Federal Supply Code (FSC) tables and classification list from 

http://www.dispositionservices.dla.mil/asset/fsclist.html. 

 

Aircraft and Airframe Structural Components 

1510     Aircraft, Fixed Wing  
1520     Aircraft, Rotary Wing  
1540     Gliders  
1550     Drones  
1560     Airframe Structural Components 

Aircraft Components and Accessories 

1610     Aircraft Propellers and Components  
1615     Helicopter Rotor Blades, Drive Mechanisms and Components.  
1620     Aircraft Landing Gear Components  
1630     Aircraft Wheel and Brake Systems  
1650     Aircraft Hydraulic, Vacuum, and De-icing System Components  
1660     Aircraft Air Conditioning, Heating, and Pressurizing Equipment  
1670     Parachutes; Aerial Pick Up, Delivery, Recovery Systems; and Cargo Tie Down 
Equipment  
1680     Miscellaneous Aircraft Accessories and Components 

Aircraft Launching, Landing, and Ground Handling Equipment 

1710     Aircraft Landing Equipment.  
1720     Aircraft Launching Equipment  
1730     Aircraft Ground Servicing Equipment  
1740     Airfield Specialized Trucks and Trailers  
1810     Space Vehicles  
1820     Space Vehicle Components  
1830     Space Vehicle Remote Control Systems  
1840     Space Vehicle Launchers  
1850     Space Vehicle Handling and Servicing Equipment  
1860     Space Survival Equipment  

Ships, Small Craft, Pontoons, and Floating Docks 

1905     Combat Ships and Landing Vessels  
1910     Transport Vessels, Passenger and Troop  
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1915     Cargo and Tanker Vessels  
1920     Fishing Vessels  
1925     Special Service Vessels  
1930     Barges and Lighters, Cargo  
1935     Barges and Lighters, Special Purpose  
1940     Small Craft  
1945     Pontoons and Floating Docks  
1950     Floating Drydocks  
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APPENDIX C 

From Section A, Chapter III: FSCs with ECC_LSs and MSs that are outside of the 

sensitivity ratio criteria. 

Table C-1. ECC_LSs and MSs that are outside of the sensitivity ratio criteria 

FSC TAMCN NOMENCLATURE 
Interval 
Lower 
Bound 

Interval 
Upper 
Bound 

B00157B 2330 Z BACKSCATTER RUGGEDIZED TRAILER (ZBRT) 0 0.0075 
E08567K 2350 ASSAULT AMPHIBIOUS VEHICLE, RECOVERY 0 0.0486 
E13787K 2350 RECOVERY VEHICLE, FT, HEAVY, W/EQUIP 0 0.0679 
A21797G 5820 TERMINAL, RADIO, TROPOSCATTER, DIGITAL 0 0.0125 
A21797G 5820 TERMINAL, RADIO, TROPOSCATTER, DIGITAL 0 0.0153 
A21797G 5820 TERMINAL, RADIO, TROPOSCATTER, DIGITAL 0 0.0153 
A23067G 2355 GROUND SENSOR SURVEILLANCE VEHICLE (GSSV) 0 0.0465 
A04997G 5895 DIGITAL TECHNICAL CONTROL (DTC) FACILITY 0 0.0253 
A04997G 5895 DIGITAL TECHNICAL CONTROL (DTC) FACILITY 0 0.0379 
A21797G 5820 TERMINAL, RADIO, TROPOSCATTER, DIGITAL 0 0.0176 
5820 A00757G ARCHIVED TAMCN 0 0.0006 
5895 A00917G VIDEO SCOUT REMOTE VIDEO EXPLOITATION 

TERMINAL (RVET) 
0 0.0006 

5998 A00917G VIDEO SCOUT REMOTE VIDEO EXPLOITATION 
TERMINAL (RVET) 

0 0.0009 

5998 A00917GA VIDEO SCOUT REMOTE VIDEO EXPLOITATION 
TERMINAL (RVET) 

0 0.0006 

5895 A02857G DISMTD DIGITAL AUTOMATED COMM TERMINAL 
(DDACT) 

0 0.0004 

5895 A04997G DIGITAL TECHNICAL CONTROL (DTC) FACILITY 0 0.0048 
5895 A04997G DIGITAL TECHNICAL CONTROL (DTC) FACILITY 0 0.0072 
5820 A09187G RADIO SET, SATELLITE, TACTICAL, PORTABLE 0 0.0007 
5820 A09187G RADIO SET, SATELLITE, TACTICAL, PORTABLE 0 0.0009 
5820 A09187GB RADIO SET, SATELLITE, TACTICAL, PORTABLE 0 0.0009 
5820 A09187GC RADIO SET, SATELLITE, TACTICAL, PORTABLE 0 0.0009 
5820 A09187GD RADIO SET, SATELLITE, TACTICAL, PORTABLE 0 0.0009 
6150 A09207G SATELLITE COMMUNICATION 0 0.0008 
5985 A13807G ANTENNA, COMMUNICATION, TRLR MTD, LTWT 0 0.007 
5985 A13807G ANTENNA, COMMUNICATION, TRLR MTD, LTWT 0 0.0057 
5985 A13807GA ANTENNA, COMMUNICATION, TRLR MTD, LTWT 0 0.0094 
5985 A13807GB ANTENNA, COMMUNICATION, TRLR MTD, LTWT 0 0.0081 
5895 A19587G KIT, MAINT, ELECTRONIC EQUIPMENT 0 0.0053 
5820 A20427G RADIO SET, HIGH FREQUENCY, MANPACK 0 0.0001 
5820 A20427G RADIO SET, HIGH FREQUENCY, MANPACK 0 0.0001 
5820 A20427GA RADIO SET, HIGH FREQUENCY, MANPACK 0 0.0001 
5820 A21717G RADIO SET, VEHICULAR 0 0.0022 
5820 A21717GI RADIO SET, VEHICULAR 0 0.0015 
5820 A21717GK RADIO SET, VEHICULAR 0 0.0022 
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FSC TAMCN NOMENCLATURE 
Interval 
Lower 
Bound 

Interval 
Upper 
Bound 

5820 A21717GL RADIO SET, VEHICULAR 0 0.0025 
5820 A21797G TERMINAL, RADIO, TROPOSCATTER, DIGITAL 0 0.0024 
5820 A21797G TERMINAL, RADIO, TROPOSCATTER, DIGITAL 0 0.0022 
5820 A21797G TERMINAL, RADIO, TROPOSCATTER, DIGITAL 0 0.0027 
5820 A21797G TERMINAL, RADIO, TROPOSCATTER, DIGITAL 0 0.0027 
5820 A21797G TERMINAL, RADIO, TROPOSCATTER, DIGITAL 0 0.0019 
2355 A23067G GROUND SENSOR SURVEILLANCE VEHICLE (GSSV) 0 0.0098 
2355 A23067G SENSOR SYSTEM, MONITOR, MOBILE 0 0.0089 
5411 A23362B SHELTER, 20FT, EMI, MAINT COMPLEX 0 0.001 
5411 A23382B SHELTER, 10FT, RIGID, MAINT COMPLEX 0 0.0009 
5805 A25057G SWITCHBOARD, TELEPHONE, AUTOMATIC 0 0.0019 
5895 A25357G DATA NETWORK, TACTICAL (GATEWAY) 0 0.0079 
5895 A25357G DATA NETWORK, TACTICAL (GATEWAY) 0 0.0088 
5895 A28087G TEST SET, OPTICAL COMMUNICATIONS 0 0.0028 
1550 A32527G UAV SYSTEM, DRAGON EYE 0 0.001 
1550 A32527G UAV SYSTEM, RAVEN 0 0.0008 
6625 A70057G ANLYZER, SPECTRUM 0 0.0002 
6625 A70057G ANLYZER, SPECTRUM 0 0.0002 
6625 A70057G ANLYZER, SPECTRUM 0 0.0002 
6625 A70057G ANLYZER, SPECTRUM 0 0.0002 
6625 A70057G ANLYZER, SPECTRUM 0 0.0001 
6625 A70057GA ANLYZER, SPECTRUM 0 0.0002 
6625 A70097G ANALYZER, SPECTRUM, HAND HELD, CREW 0 0.0007 
6625 A70097G ANALYZER, SPECTRUM, HAND HELD 0 0.0007 
6625 A70257G COUNTER, ELECTRONIC 0 0.0093 
6625 A70257G COUNTER, ELECTRONIC 0 0.0102 
6625 A70257G COUNTER, ELECTRONIC 0 0.0114 
6625 A70257G 20 GHZ CW FREQUENCY COUNTER 0 0.0063 
 A70377G OSCILLOSCOPE 0 0.0088 
6930 A70467G GENERATOR, SIGNAL 0 0.0036 
6930 A70467G GENERATOR, SIGNAL 0 0.004 
6930 A70467G 40 GHZ SIGNAL GENERATOR 0 0.004 
6930 A70527G 1 GHZ SIGNAL GENERATOR 0 0.0011 
6930 A70597G SOIL RESISTIVITY TESTER 0 0.0004 
6930 A70847G LOCAL AREA NETWORK TEST SET 0 0.0019 
6930 A70847GA ANALYZER, NETWORK 0 0.0021 
6625 A70867G OPTICAL TIME DOMAIN REFLECTOMETER (OTDR) 0 0.001 
6625 A70867G OPTICAL TIME DOMAIN REFLECTOMETER (OTDR) 0 0.0014 
6625 A70867G OTDR 0 0.0016 
5180 A79002E ELECTRONIC TOOL KIT 0 0.0001 
5180 A79107G TOOL KIT, FIBER OPTIC, GP 0 0.0016 
5180 A79107G GENERAL PURPOSE FIBER OPTIC TOOL KIT 0 0.0016 
5895 A79557G MICRO MINIATURE REPAIR STATION (PACE KIT) 0 0.003 
5895 A79557G MICRO MINIATURE REPAIR STATION (PACE KIT) 0 0.0034 
6080 A79657G KIT, CONNECTOR, FIBER OPTIC 0 0.0231 
5810 A80447G LIMITED MAINT SPARE PARTS KIT 0 0.0034 
2330 B00157B Z BACKSCATTER RUGGEDIZED TRAILER (ZBRT) 0 0.0012 
2330 B00157B VAN, Z BACKSCATTER 0 0.0014 
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FSC TAMCN NOMENCLATURE 
Interval 
Lower 
Bound 

Interval 
Upper 
Bound 

4210 B00457B EXPEDITIONARY FIRE SUPPRESSION SYSTEM 0 0.0064 
3810 B04467B AIR MOBILE CRANE, RT, HYDRAULIC, LT (SLEP) 0 0.0024 
3810 B04467B AIR MOBILE CRANE, RT, HYDRAULIC, LT (SLEP) 0 0.0027 
3810 B04467B AIR MOBILE CRANE, RT, HYDRAULIC, LT (SLEP) 0 0.0019 
8110 B05717B DRUM, FABRIC, COLLAPSIBLE, 500 GAL. CAP. 0 0.0012 
8110 B05717B DRUM, FABRIC, COLLAPSIBLE, 500 GAL. CAP. 0 0.0011 
2430 B05897B EXCAVATOR, COMBAT 0 0.003 
2430 B05897B M9 ARMORED COMBAT EARTHMOVER 0 0.0037 
4210 B06257B COMPRESSED AIR-FOAM SYSTEM, MOBILE 0 0.0042 
4930 B06757B TACTICAL AIRFIELD FUEL DISPENSING SYSTEM 

(TAFDS) (FIRESTONE) 
0 0.0101 

4930 B06757B TACTICAL AIRFIELD FUEL DISPENSING SYSTEM 
(TAFDS) (FIRESTONE) 

0 0.0101 

4930 B11357B REFUELING SYSTEM, EXPEDIENT, HELO 0 0.0173 
1055 B12987B KIT, LAUNCH, LINE CHARGE, TRLR-MTD 0 0.0015 
1055 B12987B KIT, LAUNCH, LINE CHARGE, TRLR-MTD 0 0.0013 
4320 B15707B EXPEDIENT REFUELING SYSTEM (ERS) 0 0.0014 
4320 B15707B EXPEDIENT REFUELING SYSTEM (ERS) 0 0.0014 
5180 B22602E TOOL KIT, PIONEER, ENGR SQUAD 0 0.0007 
5180 B22602E PIONEER KIT (SQD) 0 0.0009 
2430 B24627B TRACTOR, FT, MEDIUM (CATERPILLAR) 0 0.0039 
6630 B26307B ANALYSIS SET, QUALITY, PURIFICATION, WATER 0 0.0081 
6630 B26307B ANALYSIS SET, QUALITY, PURIFICATION, WATER 0 0.0091 
6630 B26307B ANALYSIS SET, QUALITY, PURIFICATION, WATER 0 0.0081 
3431 B26857B WELDING SHOP, MARINE CORPS TACTICAL 0 0.0032 
6625 B70012G ANALYZER, ELECTRICAL PULSE 0 0.0204 
6625 B70012G ANALYZER, ELECTRICAL PULSE 0 0.0181 
6625 B70012G 3-PHASE POWER ANALYZER 0 0.0163 
5855 C00042E ULTRA HIGH INTENSITY MINIATURE ILLUMINATION 

SYSTEM 
0 0.0001 

3530 C60702T SEWING MACHINE, INDUSTRIAL, HVY DUTY, LEATHER 0 0.0075 
3530 C60812T SEWING MACHINE, ZIGZAG, MED DUTY 0 0.0102 
3530 C60812T SEWING MACHINE, ZIGZAG, MED DUTY 0 0.0102 
3530 C61012T SINGLE NEEDLE KIT-MEDIUM WEIGHT 0 0.0057 
4910 C70167B DYNAMOMETER, RUN-IN, 1800HP 0 0.0459 
4940 C70252B TEST SET, HYDRAULIC, IN-LINE 0 0.0062 
4940 C70252B TEST SET, HYDRAULIC, IN-LINE 0 0.0041 
4940 C70252B TEST SET, HYDRAULIC, IN-LINE 0 0.0062 
4910 C70722B TEST STAND, GEN/STARTER AND ALTERNATOR 0 0.0011 
 

25 Scaled Deviance 5 0 0 orig_fsg_la 
25 Pearson Chi-Square 5 1.94933E-31 3.89866E-32 orig_fsg_la 
25 Scaled Pearson X2 5 1.94933E-31 3.89866E-32 orig_fsg_la 
25 Log Likelihood 

 
-0.80257565 

 
orig_fsg_la 

34 Deviance 0 0 
 

orig_fsg_la 
34 Scaled Deviance 0 0 

 
orig_fsg_la 

34 Pearson Chi-Square 0 2.23489E-33 
 

orig_fsg_la 
34 Scaled Pearson X2 0 2.23489E-33 

 
orig_fsg_la 
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